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15. Directional derivatives and the gradient

Exercise 1. Find the gradient of f .
(1) f(x, y) = 3x2y − xy3
(2) f(x, y) = x

x+y

(3) f(x, y) =
√
x2 + y2

(4) f(x, y) = x ln(x) + y ln(y)
(5) f(x, y) = ex sin(y)

(6) f(x, y, z) = x
y+z

(7) f(x, y, z) = x ln(yz)
(8) f(x, y, z) = xyzexyz

Solution. (1)
∇f(x, y) = 〈6xy − y3, 3x2 − 3xy2〉

(2) We write this as f(x, y) = x(x+ y)−1. Then

fx(x, y) = (x+ y)−1+x
∂

∂x

(
(x+ y)−1

)
=

1

x+ y
−x(x+ y)−2 = 1

x+ y
− x

(x+ y)2
=

y

(x+ y)2

fy(x, y) = −x(x+ y)−2 = − x

(x+ y)2

So
∇f(x, y) = 〈 y

(x+ y)2
,− x

(x+ y)2
〉

(3) We write this as f(x, y) = (x2 + y2)1/2. Then

fx(x, y) =
1

2
(x2 + y2)−1/2 · (2x) = x√

x2 + y2

fy(x, y) =
1

2
(x2 + y2)−1/2 · (2y) = y√

x2 + y2
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So
∇f(x, y) = 〈 x√

x2 + y2
,

y√
x2 + y2

〉

(4) We have

fx(x, y) = ln(x) + x · 1
x
= ln(x) + 1

fy(x, y) = ln(y) + y · 1
y
= ln(y) + 1

So
∇f(x, y) = 〈ln(x) + 1, ln(y) + 1〉

(5) We have by Chain Rule

fx(x, y) = ex sin(y) sin(y), fy(x, y) = ex sin(y)x cos(y),

so
∇f(x, y) = 〈ex sin(y) sin(y), ex sin(y)x cos(y)〉

(6) We write this as f(x, y, z) = x(y + z)−1. We have

fx(x, y, z) = (y + z)−1 =
1

y + z

fy(x, y, z) = −x(y + z)−2 = − x

(y + z)2

fz(x, y, z) = −x(y + z)−2 = − x

(y + z)2

So
∇f(x, y, z) = 〈 1

y + z
,− x

(y + z)2
,− x

(y + z)2
〉

(7) We have

fx(x, y, z) = ln(yz), fy(x, y, z) = x
1

yz
· z = x

y
, fz(x, y, z) = x

yz

·
y =

x

z

(8) We have

fx(x, y, z) = yzexyz + xyzexyz · (yz) = (yz + xy2z2)exyz

fy(x, y, z) = xzexyz + xyzexyz · (xz) = (xz + x2yz2)exyz

fz(x, y, z) = xyexyz + xyzexyz · (xy) = (xy + x2y2z)exyz

So

∇f(x, y, z) = 〈(yz + xy2z2)exyz, (xz + x2yz2)exyz, (xy + x2y2z)exyz〉

�

Exercise 2. Find the directional derivative.
(1) D~uf(1, 1), where f(x, y) = x2 + y2 and ~u = 〈 1√

2
,− 1√

2
〉

(2) D~uf(3, 0), where f(x, y) = x2ey and ~u = 〈3
5
,−4

5
〉.
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Solution. (1) Note D~uf(1, 1) = ~u · ∇f(1, 1). We have

fx(x, y) = 2x, fy(x, y) = 2y,

so
∇f(1, 1) = 〈2, 2〉

so

D~uf(1, 1) = 〈
1√
2
,− 1√

2
〉 · 〈2, 2〉 = 2√

2
− 2√

2
= 0

(2) Note that D~uf(3, 0) = ~u · ∇f(3, 0). We have

fx(x, y) = 2xey, fy(x, y) = x2ey,

so
∇f(3, 0) = 〈6, 9〉

so

D~uf(3, 0) = 〈
3

5
,−4

5
〉 · 〈6, 9〉 = 18

5
− 36

5
= −18

5
�

Exercise 3. Find the maximum rate of increase of f at the given point, and the direction in which
it occurs.

(1) f(x, y) = sin(xy) at (1, 0).
(2) f(x, y) = 2xy2 + xy3 at (1, 2).
(3) f(x, y, z) = xyz2 + x2y2 at (1, 0,−1)

Solution. (1) The direction of maximum rate of increase is the unit vector in the direction of
gradient,∇f(1, 0). Note

fx(x, y) = y cos(xy), fy(x, y) = x cos(xy),

so
∇f(1, 0) = 〈0, 1〉

Since this is already a unit vector, the direction of maximum rate of increase is 〈0, 1〉. The
maximum rate of increase is |∇f(1, 0)| = 1.

(2) The direction of maximum rate of increase is the unit vector in the direction of gradient,
∇f(1, 2). Note

fx(x, y) = 2y2 + y3, fy(x, y) = 4xy + 3xy2

so
∇f(1, 2) = 〈2 · 22 + 23, 4 · 2 + 3 · 22〉 = 〈16, 20〉

Thus the direction of maximum rate of increase is
∇f(1, 2)
|∇f(1, 2)|

=
〈16, 20〉√
162 + 202

=
〈16, 20〉√

656
=
〈4, 5〉√

41
= 〈 4√

41
,

5√
41
〉

The maximum rate of increase is |∇f(1, 2)| = 4
√
41.
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(3) The direction of maximum rate of increase is the unit vector in the direction of gradient,
∇f(1, 0,−1). Note

fx(x, y, z) = yz2 + 2xy2, fy(x, y, z) = xz2 + 2x2y, fz(x, y, z) = 2xyz

so
∇f(1, 0,−1) = 〈0, 1, 0〉

This is already a unit vector, so 〈0, 1, 0〉 is the direction of the maximum rate of increase.
The maximum rate of increase is |∇f(1, 0,−1)| = 1.

�

Exercise 4. Find the tangent plane.
(1) Tangent plane to xyz = 6 at (1, 2, 3)
(2) Tangent plane to x+ y + z = exyz at (0, 0, 1)
(3) Tangent plane to x4 + y4 + z4 = 3x2y2z2 at (1, 1, 1)

Solution. (1) The surface is the level surface f(x, y, z) = 6 where f(x, y, z) = xyz. The
equation of the tangent plane is

fx(1, 2, 3)(x− 1) + fy(1, 2, 3)(y − 2) + fz(1, 2, 3)(z − 3) = 0

Note that
fx(x, y, z) = yz, fy(x, y, z) = xz, fz(x, y, z) = xy

so
fx(1, 2, 3) = 6, fy(1, 2, 3) = 3, fz(1, 2, 3) = 2

so the tangent plane has equation
6(x− 1) + 3(y − 2) + 2(z − 3) = 0,

or
6x+ 3y + 2z = 18

(2) The surface is the level surface f(x, y, z) = 0 where f(x, y, z) = x + y + z − exyz . The
equation of the tangent plane is

fx(0, 0, 1)(x− 0) + fy(0, 0, 1)(y − 0) + fz(0, 0, 1)(z − 1) = 0

Note that
fx(x, y, z) = 1− yzexyz, fy(x, y, z) = 1− xzexyz, fz(x, y, z) = 1− xyexyz

so
fx(0, 0, 1) = 1, fy(0, 0, 1) = 1, fz(0, 0, 1) = 1

so the tangent plane has equation
x+ y + z − 1 = 0

(3) The surface is the level surface f(x, y, z) = 0 where f(x, y, z) = x4 + y4 + z4 − 3x2y2z2.
The equation of the tangent plane is

fx(1, 1, 1)(x− 1) + fy(1, 1, 1)(y − 1) + fz(1, 1, 1)(z − 1) = 0

Note that
fx(x, y, z) = 4x3 − 6xy2z2, fy(x, y, z) = 4y3 − 6x2yz2, fz(x, y, z) = 4z3 − 6x2y2z
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so
fx(1, 1, 1) = −2, fy(1, 1, 1) = −2, fz(1, 1, 1) = −2

so the tangent plane has equation

−2(x− 1)− 2(y − 1)− 2(z − 1) = 0,

or
−2x− 2y − 2z = −6

�

Exercise 5. Shown is a topographic map of Blue River Pine Provincial Park in British Columbia.
Draw curves of steepest descent from point A (descending to Mud Lake) and from point B.

Solution. You follow the negative gradient vectors. The picture is just an approximation, so there
might be certain inaccurancies in the drawing.

�

16. Local maxima and minima, critical points

Exercise 1. Find the critical points and use the Second Derivative Test to determine whether
they are local minima, local maxima or saddle points.
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(1) f(x, y) = xy − 2x− 2y − x2 − y2
(2) f(x, y) = y(ex − 1)
(3) f(x, y) = 2− x4 + 2x2 − y2
(4) f(x, y) = (6x− x2)(4y − y2)
(5) f(x, y) = (x2 + y2)e−x

(6) f(x, y) = sin x sin y, in −π < x < π and −π < y < π
(7) f(x, y) = y2 − 2y cosx, in −1 ≤ x ≤ 7 and −3 ≤ y ≤ 3
(8) f(x, y) = −(x2 − 1)2 − (x2y − x− 1)2

(9) f(x, y) = 3xey − x3 − e3y

Solution. (1) We �rst �nd the critical points. Note

fx(x, y) = y − 2− 2x, fy(x, y) = x− 2− 2y

So if (x, y) is a critical point, this means

y − 2− 2x = 0, x− 2− 2y,

or
y = 2 + 2x, x = 2 + 2y.

Plugging x = 2 + 2y into y = 2 + 2x, we get

y = 2 + 2(2 + 2y) = 6 + 4y,

or 6 = −3y, or y = −2. From this, we get x = 2 − 4 = −2. So there is only one critical
point, (−2,−2).

To use the Second Derivative Test, we need to compute what D(x, y) is. Note that

fxx(x, y) = −2, fxy(x, y) = 1, fyy(x, y) = −2,

so
D(x, y) = fxx(x, y)fyy(x, y)− fxy(x, y)2 = 4− 1 = 3.

This is always positive. Note also that fxx is always −2 < 0, so any critical point has to
be local maximum.

(2) We �rst �nd the critical points. Note

fx(x, y) = yex, fy(x, y) = ex − 1

so if (x, y) is a critical point, this means

yex = 0, ex − 1 = 0.

Since yex = 0 means y = 0 or ex = 0, and since ex is never zero, this means y = 0. The
second equation means ex = 1, or x = ln(1) = 0. Thus there is one critical point, (0, 0).

To use the Second Derivative Test, we need to compute what D(x, y) is. Note that

fxx(x, y) = yex, fxy(x, y) = ex, fyy(x, y) = 0,

so
D(x, y) = fxx(x, y)fyy(x, y)− fxy(x, y)2 = −e2x.

This is always negative, so any critical point is a saddle point.
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(3) We �rst �nd the critical points. Note that

fx(x, y) = −4x3 + 4x, fy(x, y) = −2y.

So if (x, y) is a critical point, this means

−4x3 + 4x = 0, −2y = 0.

So �rst of all y = 0, and we have −4x(x− 1)(x+1) = 0. Thus x could be either 0,−1 or
1. The critical points are (0, 0), (−1, 0) and (1, 0).

To use the Second Derivative Test, we need to compute what D(x, y) is. Note that

fxx(x, y) = −12x2 + 4, fxy(x, y) = 0, fyy(x, y) = −2,

so
D(x, y) = fxx(x, y)fyy(x, y)− fxy(x, y)2 = 24x2 − 8

Thus
D(0, 0) = −8 < 0

which means that (0, 0) is a saddle point. Also,

D(−1, 0) = 24− 8 > 0, fxx(−1, 0) = −12 + 4 < 0,

which means that (−1, 0) is a local maximum.

D(1, 0) = 24− 8 > 0, fxx(1, 0) = −12 + 4 < 0,

which means that (1, 0) is a local maximum.
(4) We �rst �nd the critical points. Note that

fx(x, y) = (6− 2x)(4y − y2), fy(x, y) = (6x− x2)(4− 2y),

so if (x, y) is a critical point, it means

(6− 2x)(4y − y2) = 0, (6x− x2)(4− 2y) = 0.

The �rst equation means that either 6− 2x = 0 or 4y− y2 = 0. Note also that 6− 2x = 0
means x = 3, and 4y − y2 = 0 means either y = 0 or y = 4. So the �rst requirement is
either x = 3, y = 0 or y = 4.

The second equation means that either 6x − x2 = 0 or 4 − 2y = 0. Note also that
6x − x2 = 0 means either x = 0 or x = 6, and 4 − 2y = 0 means y = 2. So the second
requirement is either x = 0, x = 6 or y = 2.

So a pair (x, y) satisfying the two requirements are as follows, following the �rst re-
quirement �rst:
• If x = 3, then out of the three possible outcomes of the second requirement, x = 0,
x = 6 or y = 2, the only possibility is y = 2, so (3, 2).
• If y = 0, then out of the three possible outcomes of the second requirement, x = 0,
x = 6 or y = 2, it could possibly be either x = 0 or x = 6, so (0, 0) or (6, 0).
• If y = 4, then out of the three possible outcomes of the second requirement, x = 0,
x = 6 or y = 2, it could possibly be either x = 0 or x = 6, so (0, 4) or (6, 4).

So the critical points are (3, 2), (0, 0), (6, 0), (0, 4) and (6, 4).
To use the Second Derivative Test, we need to compute what D(x, y) is. Note that

fxx(x, y) = −2(4y − y2), fxy(x, y) = (6− 2x)(4− 2y), fyy(x, y) = −2(6x− x2)
7



so

D(x, y) = fxx(x, y)fyy(x, y)− fxy(x, y) = 4(4y − y2)(6x− x2)− (6− 2x)2(4− 2y)2

We apply the Second Derivative Test to the �ve critical points.
• If (x, y) = (3, 2), then

D(3, 2) = 4(8− 4)(18− 9)− 0 > 0, fxx(x, y) = −2(8− 4) < 0,

so (3, 2) is a local maximum.
• If (x, y) = (0, 0), then

D(0, 0) = 0− 6242 < 0,

so (0, 0) is a saddle point.
• If (x, y) = (6, 0), then

D(6, 0) = 0− (6− 12)242 < 0,

so (6, 0) is a saddle point.
• If (x, y) = (0, 4), then

D(0, 4) = 0− 62(4− 8)2 < 0,

so (0, 4) is a saddle point.
• If (x, y) = (6, 4), then

D(6, 4) = 0− (6− 12)2(4− 8)2 < 0,

so (6, 4) is a saddle point.
(5) We �rst �nd the critical points. Note that

fx(x, y) = 2xe−x − (x2 + y2)e−x = (2x− x2 − y2)e−x, fy(x, y) = 2ye−x,

so if (x, y) is a critical point, it means that

(2x− x2 − y2)e−x = 0, 2ye−x = 0.

Since e−x is never zero, this means

2x− x2 − y2 = 0, 2y = 0.

So y = 0, and 2x− x2 = 0, which means either x = 0 or x = 2. So the critcial points are
(0, 0) and (2, 0).

To use the Second Derivative Test, we need to compute what D(x, y) is. Note that

fxx(x, y) = (2− 2x)e−x − (2x− x2 − y2)e−x = (2− 4x+ x2 + y2)e−x,

fxy(x, y) = −2ye−x,
fyy(x, y) = 2e−x.

So

D(x, y) = fxx(x, y)fyy(x, y)− fxy(x, y)2 = (4− 8x+ 2x2 + 2y2)e−2x − 4y2e−2x

• For the critical point (0, 0), we have

D(0, 0) = 4 > 0, fxx(0, 0) = 2 > 0,

so (0, 0) is a local minimum.
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• For the critical point (2, 0), we have
D(2, 0) = (4− 16 + 8)e−4 < 0,

so (2, 0) is a saddle point.
(6) We �rst �nd the critical points. Note that

fx(x, y) = cos x sin y, fy(x, y) = sinx cos y,

so if (x, y) is a critical point, it means
cosx sin y = 0, sinx cos y = 0.

So the �rst requirement is either cosx = 0 or sin y = 0, and the second requirement is
either sinx = 0 or cos y = 0.
• If cosx = 0, then sinx 6= 0, so cos y = 0.
• If sin y = 0, then cos y 6= 0, so sinx = 0.

So (x, y) is a critical point if either cosx = cos y = 0 or sinx = sin y = 0.
• If cosx = cos y = 0, then it means x, y are either π

2
or −π

2
. So the critical points

coming out of this possibility are (−π
2
,−π

2
), (−π

2
, π
2
), (π

2
,−π

2
), (π

2
, π
2
).

• If sinx = sin y = 0, then it means x, y are both 0, so the critical point coming out of
this possibility is (0, 0).

So the critcial points in the region are (−π
2
,−π

2
), (−π

2
, π
2
), (π

2
,−π

2
), (π

2
, π
2
) and (0, 0).

To use the Second Derivative Test, we need to compute what D(x, y) is. Note that
fxx(x, y) = − sinx sin y, fxy(x, y) = cos x cos y, fyy(x, y) = − sinx sin y,

so
D(x, y) = sin2 x sin2 y − cos2 x cos2 y.

• For the critical point (−π
2
,−π

2
), we have

D(−π
2
,−π

2
) = 1 > 0, fxx(−

π

2
,−π

2
) = −1 < 0,

so (−π
2
,−π

2
) is a local maximum.

• For the critical point (−π
2
, π
2
), we have

D(−π
2
,
π

2
) = 1 > 0, fxx(−

π

2
,
π

2
) = 1 > 0,

so (−π
2
, π
2
) is a local minimum,

• For the critical point (π
2
,−π

2
), we have

D(
π

2
,−π

2
) = 1 > 0, fxx(

π

2
,−π

2
) = 1 > 0,

so (π
2
,−π

2
) is a local minimum.

• For the critical point (π
2
,−π

2
), we have

D(
π

2
,−π

2
) = 1 > 0, fxx(

π

2
,−π

2
) = −1 < 0,

so (π
2
,−π

2
) is a local maximum.

• For the critical point (0, 0), we have
D(0, 0) = −1 < 0,

so (0, 0) is a saddle point.
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(7) We �rst �nd the critical points. Note that

fx(x, y) = 2y sinx, fy(x, y) = 2y − 2 cosx,

so if (x, y) is a critical point, we have

2y sinx = 0, 2y − 2 cosx = 0.

So y = cos x, and either y = 0 or sinx = 0. If y = 0, then cosx = 0, which means that
x = · · · ,−π

2
, π
2
, 3π

2
, 5π

2
, · · · . Since −π

2
∼ −1.57, 3π

2
∼ 4.71, 5π

2
∼ 7.85, the points in the

range −1 ≤ x ≤ 7 are x = π
2

and 3π
2

. If sinx = 0, then cosx could be either 1 or −1, so
y = 1 or −1. Note also that sinx = 0 in the range −1 ≤ x ≤ 7 means x = 0, π or 2π,
because 3π ∼ 9.42 > 7 and −π ∼ −3.14 < −1. So the critical points are (π

2
, 0), (3π

2
, 0),

(0, 1), (0,−1), (π, 1), (π,−1), (2π, 1), (2π,−1).
To use the Second Derivative Test, we need to compute what D(x, y) is. Note that

fxx(x, y) = 2y cosx, fxy(x, y) = 2 sinx, fyy(x, y) = 2

So
D(x, y) = 4y cosx− 4 sin2 x.

• For the critical point (π
2
, 0), we have

D(
π

2
, 0) = −4 < 0,

so (π
2
, 0) is a saddle point.

• For the critical point (3π
2
, 0),

D(
3π

2
, 0) = −4 < 0,

so (3π
2
, 0) is a saddle point.

• For the critical point (0, 1), we have

D(0, 1) = 4 > 0, fxx(0, 1) = 2 > 0,

so (0, 1) is a local minimum.
• For the critical point (0,−1), we have

D(0,−1) = −4 < 0,

so (0,−1) is a saddle point.
• For the critical point (π, 1),

D(π, 1) = −4 < 0,

so (π, 1) is a saddle point.
• For the critical point (π,−1),

D(π,−1) = 4 > 0, fxx(π,−1) = 2 > 0,

so (π,−1) is a local minimum.
• For the critical point (2π, 1),

D(2π, 1) = 4 > 0, fxx(2π, 1) = 2 > 0,

so (2π, 1) is a local minimum.
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• For the critical point (2π,−1),
D(2π,−1) = −4 < 0,

so (2π,−1) is a saddle point.
(8) We �rst �nd the critical points. Note that

fx(x, y) = −2(x2−1) ·(2x)−2(x2y−x−1) ·(2xy−1) = −4x(x2−1)−2(2xy−1)(x2y−x−1),

fy(x, y) = −2(x2y − x− 1) · (x2) = −2x2(x2y − x− 1).

So if (x, y) is a critical point, this means

−4x(x2 − 1)− 2(2xy − 1)(x2y − x− 1) = 0, −2x2(x2y − x− 1) = 0.

The second requirement means either x = 0 or x2y − x− 1 = 0.
• If x = 0, then the �rst requirement becomes

−2(−1)(−1) = 0,

which is absurd.
• If x2y − x− 1 = 0, then the �rst requirement becomes

−4x(x2 − 1) = 0,

so either x = 0, x = 1 or x = −1.
– If x = 0, then x2y − x− 1 = 0 becomes −1 = 0, which is absurd.
– If x = 1, then x2y − x − 1 = 0 becomes y − 2 = 0, or y = 2. So (1, 2) is a

critical point.
– If x = −1, then x2y − x− 1 = 0 becomes y = 0, so (−1, 0) is a critical point.

So the critical points are (1, 2) and (−1, 0).
To use the Second Derivative Test, we need to compute what D(x, y) is. Note that

fxx(x, y) = −4(x2 − 1)− 4x · (2x)− 2(2y)(x2y − x− 1)− 2(2xy − 1)(2xy − 1)

= −4(x2 − 1)− 8x2 − 4y(x2y − x− 1)− 2(2xy − 1)2

fxy(x, y) = −2(2x)(x2y − x− 1)− 2(2xy − 1)x2

fyy(x, y) = −2x4.
Note that for both (x, y) = (1, 2) and (−1, 0), we had x2y− x− 1 = 0 and x2 = 1. Using
this, we have

fxx(1, 2) = −8− 2(4− 1)2 = −8− 18 = −26,

fxy(1, 2) = −2(4− 1) = −6,
fyy(1, 2) = −2,

so D(1, 2) = 52 − 36 > 0, and fxx(1, 2) < 0, so (1, 2) is a local maximum. For (−1, 0),
we have

fxx(−1, 0) = −8− 2(−1)2 = −10,
fxy(−1, 0) = −2(−1) = 2,

fyy(−1, 0) = −2,
so D(−1, 0) = 20− 4 > 0, and fxx(−1, 0) < 0, so (−1, 0) is a local maximum.
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(9) We �rst �nd the critical points. Note that
fx(x, y) = 3ey − 3x2, fy(x, y) = 3xey − 3e3y,

so if (x, y) is a critical point, it means
3ey − 3x2 = 0, 3xey − 3e3y = 0.

The second requirement says 3xey = 3e3y, or x = e2y. The �rst requirement says 3ey =
3x2, or ey = x2. Thus,

x = e2y = (ey)2 = (x2)2 = x4.

This means either x = 0 or x3 = 1, or x = 1. If x = 0, then e2y = 0, which is absurd. If
x = 1, then e2y = 1, so y = 0. Thus there is only one critical point, (1, 0).

To use the Second Derivative Test, we need to compute what D(x, y) is. Note that
fxx(x, y) = −6x, fxy(x, y) = 3ey, fyy(x, y) = 3xey − 9e3y.

So
fxx(1, 0) = −6, fxy(1, 0) = 3, fyy(1, 0) = −6.

So
D(1, 0) = 36− 9 > 0, fxx(1, 0) = −6 < 0,

so (1, 0) is a local maximum.
�

17. Global maxima and minima

Exercise 1. Find the global maximum minimum values of f(x, y) on the region D.
(1) f(x, y) = x2 + y2 − 2x, and D is the triangular region with vertices (2, 0), (0, 2) and

(0,−2), including boundaries.
(2) f(x, y) = x+ y−xy, and D is the triangular region with vertices (0, 0), (0, 2), and (4, 0),

including boundaries.
(3) f(x, y) = x2 + y2 + x2y + 4, and D = {(x, y) | |x| ≤ 1, |y| ≤ 1}.
(4) f(x, y) = x2 + xy + y2 − 6y, and D = {(x, y) | − 3 ≤ x ≤ 3, 0 ≤ y ≤ 5}.
(5) f(x, y) = x2 + 2y2 − 2x− 4y + 1, and D = {(x, y) | 0 ≤ x ≤ 2, 0 ≤ y ≤ 3}.

Solution. (1) We �rst �nd the critical points. Note that
fx(x, y) = 2x− 2, fy(x, y) = 2y,

so if (x, y) is a critical point, then 2x − 2 = 0 and 2y = 0, which means that x = 1 and
y = 0. Since (1, 0) is inside the regionD, there is a critical point and it is (1, 0). The value
of f(x, y) at the critical point (1, 0) is f(1, 0) = −1.

The boundary of the region D is naturally divided into three parts.
• L1 = {(x, 2 − x) | 0 ≤ x ≤ 2}, the line connecting (2, 0) and (0, 2): on L1, the

function f(x, y) becomes
f(x, 2− x) = x2 + (2− x)2 − 2x = 2x2 − 6x+ 4

Finding the maximum and the minimum values of f on L1 amounts to �nding the
global maximum and minimum values of f(x) = 2x2 − 6x + 4 on 0 ≤ x ≤ 2. This
function has the critical point when f ′(x) = 4x− 6 = 0, or x = 3

2
. At this point, the

value of f is f(3
2
) = 2 · 9

4
− 6 · 3

2
+ 4 = −1

2
. There are two boundary points, x = 0

12



and x = 2, and at them the values of f are f(0) = 4 and f(2) = 8 − 12 + 4 = 0.
Thus, among those values, the largest is 4 and the smallest is −1

2
. Thus, on L1, the

maximum value of f is 4, and the minimum value of f is −1
2
.

• L2 = {(0, y) | − 2 ≤ y ≤ 2}, the line connecting (0, 2) and (0,−2): on L2, the
function f(x, y) becomes

f(0, y) = y2

Finding the maximum and the minimum values of f on L2 amounts to �nding the
global maximum and minimum values of f(y) = y2 on −2 ≤ y ≤ 2. This function
has the critical point when f ′(y) = 2y = 0, or y = 0. At this point, the value of f
is f(0) = 0. There are two boundary pointst, y = −2 and y = 2, and at them the
values of f are f(−2) = f(2) = 4. Thus, among those values, the largest is 4 and the
smallest is 0. Thus, on L2, the maximum value of f is 4, and the minimum value of f
is 0.
• L3 = {(x, x − 2) | 0 ≤ x ≤ 2}, the line connecting (0,−2) and (2, 0): on L3, the

function f(x, y) becomes

f(x, x− 2) = x2 + (x− 2)2 − 2x = 2x2 − 6x+ 4

Finding the maximum and the minimum values of f on L3 amounts to �nding the
global maximum and minimum values of f(x) = 2x2 − 6x+ 4 on 0 ≤ x ≤ 2. This is
exactly the same problem as the problem onL1, so we know that, onL3, the maximum
value of f is 4 and the minimum value of f is −1

2
.

Among all these values, the maximum value is 4, and the minimum value is −1.
(2) We �rst �nd the critical points. Note that

fx(x, y) = 1− y, fy(x, y) = 1− x

so if (x, y) is a critical point, then 1− y = 0 and 1− x = 0, which means that x = 1 and
y = 1. Since (1, 1) is inside the regionD, there is a critcial point and it is (1, 1). The value
of f(x, y) at the critical point (1, 1) is f(1, 1) = −1.

The boundary of the region D is naturally divided into three parts.
• L1 = {(0, y) | 0 ≤ y ≤ 2}, the line connecting (0, 0) and (0, 2): on L1, the function
f(x, y) becomes

f(0, y) = y

Finding the maximum and the minimum values of f on L1 amounts to �nding the
global maximum and minimum values of f(y) = y on 0 ≤ y ≤ 2. Obviously, the
minimum value is 0 and the maximum value is 2.
• L2 = {(4 − 2y, y) | 0 ≤ y ≤ 2}, the line connecting (0, 2) and (4, 0): on L2, the

function f(x, y) becomes

f(4− 2y, y) = (4− 2y) + y − (4− 2y)y = 4− 5y + 2y2

Finding the maximum and the minimum values of f on L2 amounts to �nding the
global maximum and minimum values of f(y) = 4 − 5y + 2y2 on 0 ≤ y ≤ 2. This
function has the critical point when f ′(y) = 4y − 5 = 0, or y = 5

4
. At this point, the

value of f is f(5
4
) = 4− 5 · 5

4
+2 · 25

16
= 7

8
. There are two boundary pointst, y = 0 and

y = 2, and at them the values of f are f(0) = 4 and f(2) = 4 − 10 + 8 = 2. Thus,
13



among those values, the largest is 4 and the smallest is 7
8
. Thus, on L2, the maximum

value of f is 4, and the minimum value of f is 7
8
.

• L3 = {(x, 0) | 0 ≤ x ≤ 4}, the line connecting (0, 0) and (4, 0): on L3, the function
f(x, y) becomes

f(x, 0) = x

Finding the maximum and the minimum values of f on L3 amounts to �nding the
global maximum and minimum values of f(x) = x on 0 ≤ x ≤ 4. Obviously, the
minimum value is 0, and the maximum value is 4.

Among all these values, the maximum value is 4, and the minimum value is −1.
(3) We �rst �nd the critical points. Note that

fx(x, y) = 2x+ 2xy = 2x(1 + y), fy(x, y) = 2y + x2

so if (x, y) is a critical point, then 2x(1 + y) = 0 and 2y + x2 = 0. The �rst requirement
says either x = 0 or 1 + y = 0, or y = −1.
• If x = 0, the second requirement says that 2y = 0, or y = 0. So (0, 0) is a critical

point.
• If y = −1, the second requirement says that −2 + x2 = 0, or x2 = 2. Thus either
x =
√
2 or −

√
2. On the other hand, |

√
2| > 1, so these critcial points do not belong

to the region D.
So, there is one critical point, (0, 0). The value of f(x, y) at the critical point is f(0, 0) = 4.

The boundary of the region D, which is a square, is naturally divided into four parts.
• L1 = {(−1, y) | − 1 ≤ y ≤ 1}: on L1, the function f(x, y) becomes

f(−1, y) = 1 + y2 + y + 4 = y2 + y + 5

Finding the maximum and the minimum values of f on L1 amounts to �nding the
global maximum and minimum values of f(y) = y2 + y + 5 on −1 ≤ y ≤ 1. The
critical point of f(y) happens when f ′(y) = 2y + 1 = 0, or y = −1

2
. At the critcial

point, the value of f is f(−1
2
) = 1

4
− 1

2
+ 5 = 19

4
. There are two boundary points,

y = −1 and y = 1, and at them the values of f are f(−1) = 5 and f(1) = 7. So, on
L1, the maximum value of f is 7, and the minimum value of f is 19

4
.

• L2 = {(x, 1) | − 1 ≤ x ≤ 1}: on L2, the function f(x, y) becomes

f(x, 1) = x2 + 1 + x2 + 4 = 2x2 + 5

Finding the maximum and the minimum values of f on L2 amounts to �nding the
global maximum and minimum values of f(x) = 2x2 + 5 on −1 ≤ x ≤ 1. This
function has the critical point when f ′(x) = 4x = 0, or x = 0. At this point, the
value of f is f(0) = 5. There are two boundary points, x = −1 and x = 1, and at
them the values of f are f(−1) = f(1) = 7. Thus, among those values, the largest is
7 and the smallest is 5. Thus, on L2, the maximum value of f is 7, and the minimum
value of f is 5.
• L3 = {(1, y) | − 1 ≤ y ≤ 1}: on L3, the function f(x, y) becomes

f(1, y) = 1 + y2 + y + 4 = y2 + y + 5

Finding the maximum and the minimum values of f on L3 amounts to �nding the
global maximum and minimum values of f(y) = y2 + y + 5 on −1 ≤ y ≤ 1. This

14



is exactly the same situation as that over L1, so we know that, on L3, the maximum
value of f is 7, and the minimum value of f is 19

4
.

• L4 = {(x,−1) | − 1 ≤ x ≤ 1}: on L4, the function f(x, y) becomes

f(x,−1) = x2 + 1− x2 + 4 = 5

So the maximum and minimum of f on L4 are both 5.
Among all these values, the maximum value is 7, and the minimum value is 4.

(4) We �rst �nd the critical points. Note that

fx(x, y) = 2x+ y, fy(x, y) = x+ 2y − 6,

so if (x, y) is a critical point, then 2x+ y = 0 and x+ 2y− 6 = 0. To solve this system of
linear equations, we make the �rst equation into y = −2x, and plug this into the second
equation, which yields x+2(−2x)−6 = 0, or−3x−6 = 0, or x = −2. From this, y = 4.
Since (−2, 4) is in the region of D, (−2, 4) is a critical point. The value of f(x, y) on this
point is f(−2, 4) = 4− 8 + 16− 24 = −12.

The boundary of D, which is a rectangle, is naturally divided into four parts.
• L1 = {(−3, y) | 0 ≤ y ≤ 5}: on L1, the function f(x, y) becomes

f(−3, y) = 9− 3y + y2 − 6y = y2 − 9y + 9

Finding the maximum and the minimum values of f on L1 amounts to �nding the
global maximum and minimum values of f(y) = y2 − 9y + 9 on 0 ≤ y ≤ 5. This
function has the critical point when f ′(y) = 2y − 9 = 0, or y = 9

2
. At this point, the

value of f is f(9
2
) = 81

4
− 81

2
+ 9 = −45

4
. The boundary points are y = 0 and y = 5,

at which the values of f are f(0) = 9 and f(5) = 25 − 45 + 9 = −11. Thus, on L1,
the maximum value of f is 9, and the minimum value of f is −45

4
.

• L2 = {(x, 5) | − 3 ≤ x ≤ 3}: on L2, the function f(x, y) becomes

f(x, 5) = x2 + 5x+ 25− 30 = x2 + 5x− 5

Finding the maximum and the minimum values of f on L2 amounts to �nding the
global maximum and minimum values of f(x) = x2 + 5x − 5 on −3 ≤ x ≤ 3. This
function has the critical point when f ′(x) = 2x+5 = 0, or x = −5

2
. At this point, the

value of f is f(−5
2
) = 25

4
− 25

2
−5 = −45

4
. The boundary points are x = −3 and x = 3,

at which the values of f are f(−3) = 9− 15− 5 = −11 and f(3) = 9+15− 5 = 19.
Thus, on L2, the maximum value of f is 19, and the minimum value of f is −45

4
.

• L3 = {(3, y) | 0 ≤ y ≤ 5}: on L3, the function f(x, y) becomes

f(3, y) = 9 + 3y + y2 − 6y = y2 − 3y + 9

Finding the maximum and the minimum values of f on L3 amounts to �nding the
global maximum and minimum values of f(y) = y2 − 3y + 9. This function has the
critical point when f ′(y) = 2y − 3 = 0, or y = 3

2
. At this point, the value of f is

f(3
2
) = 9

4
− 9

2
+ 9 = 27

4
. The boundary points are y = 0 and y = 5, at which the

values of f are f(0) = 9 and f(5) = 25 − 15 + 9 = 19. Thus, on L3, the maximum
value of f is 19, and the minimum value of f is 27

4
.

• L4 = {(x, 0) | − 3 ≤ x ≤ 3}: on L4, the function f(x, y) becomes

f(x, 0) = x2
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Finding the maximum and the minimum values of f on L4 amounts to �nding the
global maximum and minimum values of f(x) = x2 on −3 ≤ x ≤ 3. This function
has the critical point when f ′(x) = 2x = 0, or x = 0. At this point, the value of
f is f(0) = 0. There are two boundary points, x = −3 and x = 3, at which the
values of f are f(−3) = f(3) = 9. Thus, on L4, the maximum value of f is 9, and
the minimum value of f is 0.

Combining these, the maximum value of f is 19, and the minimum value of f is −12.
(5) We �rst �nd the critical points. Note that

fx(x, y) = 2x− 2, fy(x, y) = 4y − 4

so if (x, y) is a critical point, then 2x − 2 = 0 and 4y − 4 = 0, or x = 1 and y = 1. This
is in the region of D, so (1, 1) is the critical point, at which the value of f is f(1, 1) =
1 + 2− 2− 4 + 1 = −2.

The boundary of D, which is a rectangle, is naturally divided into four parts.
• L1 = {(0, y) | 0 ≤ y ≤ 3}: on L1, the function f(x, y) becomes

f(0, y) = 2y2 − 4y + 1

Finding the maximum and the minimum values of f on L1 amounts to �nding the
global maximum and minimum values of f(y) = 2y2 − 4y + 1 on 0 ≤ y ≤ 3. This
function has the critical point when f ′(y) = 4y − 4 = 0, or y = 1. At this point, the
value of f is f(1) = 2 − 4 + 1 = −1. There are two boundary points, y = 0 and
y = 3, at which the values of f are f(0) = 1 and f(3) = 18− 12 + 1 = 7. Thus, on
L1, the maximum value of f is 7, and the minimum value of f is −1.
• L2 = {(x, 3) | 0 ≤ x ≤ 2}: on L2, the function f(x, y) becomes

f(x, 3) = x2 + 18− 2x− 12 + 1 = x2 − 2x+ 7

Finding the maximum and the minimum values of f on L2 amounts to �nding the
global maximum and minimum values of f(x) = x2 − 2x + 7 on 0 ≤ x ≤ 2. This
function has the critical point when f ′(x) = 2x− 2 = 0, or x = 1. At this point, the
value of f is f(1) = 1− 2+ 7 = 6. There are two boundary points, x = 0 and x = 2,
at which the values of f are f(0) = 7 and f(2) = 4 − 4 + 7 = 7. Thus, on L2, the
maximum value of f is 7, and the minimum value of f is 6.
• L3 = {(2, y) | 0 ≤ y ≤ 3}: on L3, the function f(x, y) becomes

f(2, y) = 4 + 2y2 − 4− 4y + 1 = 2y2 − 4y + 1

Finding the maximum and the minimum values of f on L3 amounts to �nding the
global maximum and minimum values of f(y) = 2y2 − 4y + 1 on 0 ≤ y ≤ 3. This
situation is identical to the situation over L1, so on L3, the maximum value of f is 7,
and the minimum value of f is −1.
• L4 = {(x, 0) | 0 ≤ x ≤ 2}: on L4, the function f(x, y) becomes

f(x, 0) = x2 − 2x+ 1

Finding the maximum and the minimum values of f on L4 amounts to �nding the
global maximum and minimum values of f(x) = x2 − 2x + 1 on 0 ≤ x ≤ 2. This
function has the critical point when f ′(x) = 2x− 2 = 0, or x = 1. At this point, the
value of f is f(1) = 1− 2+ 1 = 0. There are two boundary points, x = 0 and x = 2,
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at which the values of f are f(0) = 1 and f(2) = 4 − 4 + 1 = 1. Thus, on L4, the
maximum value of f is 1, and the minimum value of f is 0.

Combining all of these, we �nd that the global maximum value of f(x, y) on D is 7, and
the global minimum value of f(x, y) on D is −2.

�

Exercise 2. Find the shortest distance from the point (2, 0,−3) to the plane x+ y + z = 1.

Solution. If (x, y, z) is on the plane x + y + z = 1, the value of z is expressed in terms of the
values of x, y via z = 1− x− y. The question is equivalent to asking the global minimum value
of

f(x, y) =
√

(2− x)2 + (0− y)2 + (−3− (1− x− y))2

Since the distance from a point on the plane x+ y+ z = 1 to (2, 0,−3) grows larger as the point
veers o� towards in�nity, there is no boundary point to be considered. Thus, we just need to �nd
the critical points of f(x, y) and take the minimum values of f on the critical points.

The function f(x, y) is

f(x, y) =
√

(2− x)2 + y2 + (x+ y − 4)2 =
√

(x2 − 4x+ 4) + y2 + (x2 + y2 + 16− 8x− 8y + 2xy)

=
√
2x2 + 2xy + 2y2 − 12x− 8y + 20

The point (x, y) is a critical point if

fx(x, y) =
4x+ 2y − 12

2
√

2x2 + 2xy + 2y2 − 12x− 8y + 20
=

2x+ y − 6√
2x2 + 2xy + 2y2 − 12x− 8y + 20

= 0

and

fy(x, y) =
2x+ 4y − 8

2
√

2x2 + 2xy + 2y2 − 12x− 8y + 20
=

x+ 2y − 4√
2x2 + 2xy + 2y2 − 12x− 8y + 20

= 0

This means that 2x+ y − 6 = 0 and x+ 2y − 4 = 0, or

2x+ y = 6, x+ 2y = 4

The second equation means x = 4− 2y, and we can plug this into the �rst equation:

2(4− 2y) + y = 6,

or 2−3y = 0, or y = 2
3
. From this, x = 4− 4

3
= 8

3
. The shortest distance is thus f(8

3
, 2
3
), given by

f(
8

3
,
2

3
) =

√
2 · 64

9
+ 2 · 16

9
+ 2 · 4

9
− 12 · 8

3
− 8 · 2

3
+ 20

=

√
168

9
− 112

3
+ 20

=

√
56

3
− 112

3
+ 20 =

√
−56

3
+ 20 =

√
4

3

�

Exercise 3. Find the point on the plane x− 2y + 3z = 6 that is closest to the point (0, 1, 1).
17



Solution. If (x, y, z) is on the plane x − 2y + 3z = 6, the value of x is expressed in terms of the
values of y, z via x = 2y−3z+6. The question is equivalent to asking the point that the function

f(y, z) =
√

(0− (2y − 3z + 6))2 + (1− y)2 + (1− z)2

achieves its global minimum. Since the distance from a point on the plane x − 2y + 3z = 6 to
(0, 1, 1) grows in�nitely larger as the point veers o� towards in�nity, there is no boundary point
to be considered. Thus, we just need to �nd the critical points of f(y, z) and take the minimum
values of f on the critical points.

The function f(y, z) is

f(y, z) =
√

(0− (2y − 3z + 6))2 + (1− y)2 + (1− z)2

=
√

(4y2 + 9z2 + 36− 12yz + 24y − 36z) + (y2 − 2y + 1) + (z2 − 2z + 1)

=
√

5y2 + 10z2 − 12yz + 22y − 38z + 38

The point (y, z) is a critical point if

fy(y, z) =
10y − 12z + 22

2
√

5y2 + 10z2 − 12yz + 22y − 38z + 38
=

5y − 6z + 11√
5y2 + 10z2 − 12yz + 22y − 38z + 38

= 0

and

fz(y, z) =
20z − 12y − 38

2
√

5y2 + 10z2 − 12yz + 22y − 38z + 38
=

10z − 6y − 19√
5y2 + 10z2 − 12yz + 22y − 38z + 38

= 0

This means that 5y−6z+11 = 0 and 10z−6y−19 = 0. The second equation means z = 3
5
y+ 19

10
,

which can be plugged into the �rst equation to obtain

5y − 6(
3

5
y +

19

10
) + 11 = 0,

or
7

5
y − 2

5
= 0,

or y = 2
7
. From this, z = 3

5
· 2
7
+ 19

10
= 29

14
, and x = 2 · 2

7
− 3 · 29

14
+ 6 = 5

14
. Thus, the closest point

is ( 5
14
, 2
7
, 29
14
). �

Exercise 4. Find the point on the surface z = x2 + y2 that are closest to the point (5, 5, 0).

Solution. If (x, y, z) is on the surface, the value of z is expressed in terms of the values of x, y via
z = x2 + y2. The question is equivalent to asking the point that the global minimum value of

f(x, y) =
√

(x− 5)2 + (y − 5)2 + (x2 + y2 − 0)2

is achieved. If x or y goes to in�nity or negative in�nity, this function goes to in�nity, so there
is no need to worry about the boundary. Thus, we just need to �nd the critical points of f(x, y)
and take the minimum.

The function f(x, y) is

f(x, y) =
√
(x− 5)2 + (y − 5)2 + (x2 + y2 − 0)2 =

√
(x2 − 10x+ 25) + (y2 − 10y + 25) + (x4 + 2x2y2 + y4)

=
√
x4 + 2x2y2 + y4 + x2 + y2 − 10x− 10y + 50
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The point (x, y) is a critical point if

fx(x, y) =
4x3 + 4xy2 + 2x− 10

2
√
x4 + 2x2y2 + y4 + x2 + y2 − 10x− 10y + 50

=
2x3 + 2xy2 + x− 5√

x4 + 2x2y2 + y4 + x2 + y2 − 10x− 10y + 50
= 0

and
fy(x, y) =

4x2y + 4y3 + 2y − 10

2
√
x4 + 2x2y2 + y4 + x2 + y2 − 10x− 10y + 50

=
2x2y + 2y3 + y − 5√

x4 + 2x2y2 + y4 + x2 + y2 − 10x− 10y + 50
= 0

This means
2x3 + 2xy2 + x− 5 = 0, 2x2y + 2y3 + y − 5 = 0

Subtracting the second equation from the �rst equation, we get

(2x3 + 2xy2 + x− 5)− (2x2y + 2y3 + y − 5) = 0,

or
2x3 − 2x2y + 2xy2 − 2y3 + x− y = 0

,or
(x− y)(2x2 + 2y2 + 1) = 0

Since 2x2 + 2y2 + 1 ≥ 1 is never zero, this means x − y = 0, or x = y. Using this, the �rst
equation becomes

2x3 + 2x3 + x− 5 = 0,

or 4x3+x−5 = 0. This can be factorized as (x−1)(4x2+4x+5) = 0. Note that 4x2+4x+5 = 0
has no roots (alternatively, 4x2 +4x+5 = (2x+1)2 +4 ≥ 4 is never zero), so the critcial points
can happen only if x = y = 1. Then z = 2. This point, (1, 1, 2), is thus the point that is closest
to (5, 5, 0). �

Exercise 5. Find the points on the surface y2 = 9 + xz that are closest to the origin.

Solution. If (x, y, z) is on the surface, then either y =
√
9 + xz or y = −

√
9 + xz. Since the

distance from (x, y, z) to (0, 0, 0) is the same as the distance from (x,−y, z) to (0, 0, 0), you only
need to consider y =

√
9 + xz to �nd the closest distance. The problem of �nding the closest

distance to the origin becomes the problem of �nding the global minimum value of

f(x, z) =
√
x2 + (9 + xz) + z2 =

√
x2 + xz + z2 + 9

As before, the global minimum does not show up as x, z go to in�nity. The critical points happen
when

fx(x, z) =
2x+ z

2
√
x2 + xz + z2 + 9

= 0,

fz(x, z) =
x+ 2z

2
√
x2 + xz + z2 + 9

= 0

so this means
2x+ z = 0, x+ 2z = 0
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The second equation is x = −2z, so plugging this into the �rst equation, we get 2(−2z)+ z = 0,
or −3z = 0, or z = 0, so x = 0. So the closest distance is f(0, 0) = 9 and happens at (0, 3, 0).
Since the same distance is achieved at (0,−3, 0), the points on the surface closest to the origin
are (0, 3, 0) and (0,−3, 0). �

18. Lagrange multipliers

Exercise 1. Find the global maximum and minimum values of f subject to the given constraint.
(1) f(x, y) = x2 − y2, on x2 + y2 = 1
(2) f(x, y) = xey, on x2 + y2 = 2

(3) f(x, y) = xye−x
2−y2 , on x2 + y2 = 1

(4) f(x, y, z) = xy2z, on x2 + y2 + z2 = 4
(5) f(x, y, z) = x2 + y2 + z2, on x2 + y2 + z2 + xy = 12
(6) f(x, y, z) = x4 + y4 + z4, on x2 + y2 + z2 = 1

Solution.
(1) The constraint is g(x, y) = 1 where g(x, y) = x2 + y2. So the global max/min can occur

at the Lagrange critical points, namely when ∇f(x, y) and ∇g(x, y) are parallel. Since
∇f(x, y) = 〈2x,−2y〉 and ∇g(x, y) = 〈2x, 2y〉, this happens either when ∇g(x, y) =
〈0, 0〉, which is when x = y = 0, which contradicts x2 + y2 = 1, or there is λ such that
〈2x,−2y〉 = λ〈2x, 2y〉. Since 2x = 2λx, either λ = 1 or x = 0.
• If λ = 1, then −2y = 2y, so y = 0. Then x2 = 1, so f(x, y) = 1.
• If x = 0, then y2 = 1, so f(x, y) = −1.

So the global max is 1 and the global min is −1.
(2) The constraint is g(x, y) = 2 where g(x, y) = x2 + y2. So the global max/min can occur

at the Lagrange critical points, namely when ∇f(x, y) and ∇g(x, y) are parallel. Since
∇f(x, y) = 〈ey, xey〉 and ∇g(x, y) = 〈2x, 2y〉, This happens either when ∇g(x, y) =
〈0, 0〉, which is when x = y = 0, which contradicts x2 + y2 = 2, or there is λ such that
〈ey, xey〉 = λ〈2x, 2y〉. So 2λx2 = 2λy, so either λ = 0 or x2 = y.
• If λ = 0, then ey = 0, which is a contradiction.
• If x2 = y, then x2 + y2 = 2 becomes x4 + x2 − 2 = 0. This factorizes into (x2 −
1)(x2 + 2) = 0. So either x2 = 1 or x2 = −2. Since x2 is positive, x2 = 1, so either
x = 1 or x = −1. Thus y = 1.

So the Lagrange critical poitns are (1, 1) and (−1, 1). Since f(1, 1) = e and f(−1, 1) =
−e, the global max is e and the global min is −e.

(3) The constraint is g(x, y) = 1 where g(x, y) = x2 + y2. So the global max/min can occur
at the Lagrange critical points, namely when ∇f(x, y) and ∇g(x, y) are parallel. Since
∇f(x, y) = 〈ye−x2−y2 − 2x2ye−x

2−y2 , xe−x
2−y2 − 2xy2e−x

2−y2〉 and∇g(x, y) = 〈2x, 2y〉,
they can be parallel if there is λ such that

(1− 2x2)ye−x
2−y2 = 2λx, (1− 2y2)xe−x

2−y2 = 2λy.

So
(1− 2x2)y2e−x

2−y2 = 2λxy = (1− 2y2)x2e−x
2−y2

so
(1− 2x2)y2 = (1− 2y2)x2
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Expanding out we get
y2 − 2x2y2 = x2 − 2x2y2

or y2 = x2. So either x = y or x = −y. Using x2 + y2 = 1, we get 2x2 = 1, or x = 1√
2

or − 1√
2
. The function x2 + y2 is set to be 1, and xy is maximized when x = y which is

1/2 and minimized when x = −y which is −1/2. So the global maximum is e−1

2
and the

global minimum is − e−1

2
.

(4) The constraint is g(x, y, z) = 4 where g(x, y, z) = x2 + y2 + z2.

∇f(x, y, z) = 〈y2z, 2xyz, xy2〉, ∇g(x, y, z) = 〈2x, 2y, 2z〉
In order for them to be parallel, either ∇g is zero or there is λ such that ∇f(x, y, z) =
λ∇g(x, y, z).
• If∇g(x, y, z) = 〈0, 0, 0〉, then x = y = z = 0, which cannot happen as x2+y2+z2 =
4.
• If there is λ such that∇f(x, y, z) = λ∇g(x, y, z), then

y2z = 2λx, 2xyz = 2λy, xy2 = 2λz

So
xy2z = 2λx2, xy2z = λy2, xy2z = 2λz2

so
2λx2 = λy2 = 2λz2

so either λ = 0 or 2x2 = y2 = 2z2.
– If λ = 0, then y2z = 0, which means either y = 0 or z = 0. In either case,
f(x, y, z) = 0.

– If 2x2 = y2 = 2z2, we use this with x2 + y2 = z2 = 4 to get

x2 + 2x2 + x2 = 4,

or x2 = 1, or x = 1 or x = −1. Then y2 = 2, and z2 = 1, so z = 1 or z = −1.
Thus f(x, y, z) is either 2 or −2.

Combining all these, the global maximum is 2 and the global minimum is −2.
(5) The constratint is g(x, y, z) = 12 where g(x, y, z) = x2 + y2 + z2 + xy.

∇f(x, y, z) = 〈2x, 2y, 2z〉, ∇g(x, y, z) = 〈2x+ y, 2y + x, 2z〉
For them to be parallel, either ∇g(x, y, z) is zero or there is λ such that ∇f(x, y, z) =
λ∇g(x, y, z).
• If∇g(x, y, z) = 〈0, 0, 0〉, then z = 0, and 2x+y = 0 and 2y+x = 0. This solves into
x−y = 0, so x = y, so x = y = 0. This in turn is impossible as x2+y2+z2+xy = 12.
• If there is λ such that∇f(x, y, z) = λ∇g(x, y, z), we have

2x = λ(2x+ y), 2y = λ(2y + x), 2z = 2λz

From the third equation, either λ = 1 or z = 0.
– If λ = 1, we have

2x = 2x+ y, 2y = 2y + x

so x = 0 and y = 0. The constraint then becomes z2 = 12, at which f(x, y, z) =
12.
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– If z = 0, we have

2x = λ(2x+ y), 2y = λ(2y + x)

Adding these two, we get

2(x+ y) = 3λ(x+ y)

so either x+ y = 0 or 2 = 3λ.
∗ If x+ y = 0, or y = −x, we get 2x = λx, so either λ = 0 or x = 0.
· If λ = 0, then this means x = y = z = 0, which is not allowed.
· If x = 0, then y = 0, and we already had z = 0, so x = y = z = 0 which

is not allowed.
∗ If λ = 2

3
, then 2x = 2

3
(2x + y) implies 6x = 4x + 2y, or 2x = 2y, or

x = y. Putting this into the constraint, we get 3x2 = 12, or x2 = 4. So
f(x, y, z) = 8.

Combining all these, we get 8 is the global minimum, and 12 is the global maximum.
(6) The constraint is g(x, y, z) = 1 where g(x, y, z) = x2 + y2 + z2.

∇f(x, y, z) = 〈4x3, 4y3, 4z3〉, ∇g(x, y, z) = 〈2x, 2y, 2z〉
For them to be parallel, either ∇g(x, y, z) is zero or there is λ such that ∇f(x, y, z) =
λ∇g(x, y, z).
• If ∇g(x, y, z) = 〈0, 0, 0〉, x = y = z = 0, which is not allowed as x2 + y2 + z2 = 1.
• If there is λ such that∇f(x, y, z) = λ∇g(x, y, z), then

4x3 = 2λx, 4y3 = 2λy, 4z3 = 2λz

So from the �rst equation, either x = 0 or 2x2 = λ.
– If x = 0, the second equation says either y = 0 or 2y2 = λ.
∗ If y = 0, then x = y = 0, so z2 = 1, which means f(x, y, z) = 1.
∗ If 2y2 = λ, the third equation says either z = 0 or 2z2 = λ.
· If z = 0, then x = z = 0, so y2 = 1, which means f(x, y, z) = 1.
· If 2z2 = λ, then 2y2 = 2z2, so x2 = 0, y2 = z2 = 1

2
. So f(x, y, z) = 1

2
.

– If 2x2 = λ, the second equation says either y = 0 or 2y2 = λ.
∗ If y = 0, then the third equation says either z = 0 or 2z2 = λ.
· If z = 0, then y = z = 0, so x2 = 1, so f(x, y, z) = 1.
· If 2z2 = λ, then 2x2 = 2z2, so x2 = z2 = 1

2
while y2 = 0, so f(x, y, z) =

1
2
.

∗ If 2y2 = λ, the third equation says either z = 0 or 2z2 = λ.
· If z = 0, then 2x2 = 2y2 while z2 = 0, so x2 = y2 = 1

2
, so f(x, y, z) = 1

2
.

· If 2z2 = λ, then 2x2 = 2y2 = 2z2, so x2 = y2 = z2 = 1
3
. So f(x, y, z) =

1
3
.

Combining these, the global minimum is 1
3
, and the global maximum is 1.

�

Exercise 2. Find the global maximum and minimum values of f on the given region.
(1) f(x, y) = x2 + y2 + 4x− 4y, on x2 + y2 ≤ 9
(2) f(x, y) = 2x2 + 3y2 − 4x− 5, on x2 + y2 ≤ 16
(3) f(x, y) = sin(x+ y), on x2 + xy + y2 ≤ 3
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(4) f(x, y, z) = xyz, on x2 + y2 + z2 ≤ 1
(5) f(x, y, z) = x2 + y2 + z2, on x4 + y4 + z4 ≤ 1
(6) f(x, y, z) = x2 + y2 + z2, on x2 + y2 + z2 + xy − xz − yz ≤ 1

Solution.
(1) Use the 4-step process.

• Step 1: Find the critical points. Note that

∇f(x, y) = 〈2x+ 4, 2y − 4〉
so ∇f(x, y) = 〈0, 0〉 means 2x+ 4 = 0 and 2y − 4 = 0, or x = −2 and y = 2. Since
(−2, 2) does belong to the region x2 + y2 ≤ 9, (−2, 2) is a critical point.
• Step 2: Find the max/min values of f at the critical points. Both the max and min

values of f are f(−2, 2) = 4 + 4− 8− 8 = −8.
• Step 3: Find the global max/min of f on the boundary. On the boundary we have

a constraint g(x, y) = 9, where g(x, y) = x2 + y2. By the method of Lagrange
multipliers, we would like to �nd a point (x, y) where∇f(x, y) = 〈2x+ 4, 2y − 4 is
parallel to ∇g(x, y) = 〈2x, 2y〉. This can happen either when ∇g(x, y) = 〈0, 0〉 or
there is λ such that∇f(x, y) = λ∇g(x, y).

– If∇g(x, y) = 〈0, 0〉, this means x = y = 0, which does not satisfy the constraint
x2 + y2 = 9.

– Suppose there is λ such that 〈2x+ 4, 2y − 4〉 = λ〈2x, 2y〉. Then

2x+ 4 = 2λx, 2y − 4 = 2λy

or
2 = (λ− 1)x, −2 = (λ− 1)y

so (λ− 1)x = −(λ− 1)y. Thus, either λ = 1 or x = −y.
∗ If λ = 1, then 2 = (λ− 1)x implies 2 = 0, so this doesn’t make sense.
∗ If x = −y, then x2 + y2 = 9 implies that 2x2 = 9, or x = 3√

2
or− 3√

2
. Thus

the Lagrange critical points are ( 3√
2
,− 3√

2
) and (− 3√

2
, 3√

2
).

Thus the Lagrange critical points are ( 3√
2
,− 3√

2
) and (− 3√

2
, 3√

2
), and over them the

values of f are f( 3√
2
,− 3√

2
) = 9+ 12√

2
+ 12√

2
= 9+12

√
2 and f(− 3√

2
, 3√

2
) = 9− 12√

2
−

12√
2
= 9− 12

√
2.

• Step 4: Compare the values from Step 2 and Step 3 and take the max/min. The maxi-
mum will be 9 + 12

√
2 and the minimum will be −8.

(2) Use the 4-step process.
• Step 1: Find the critical points. Note

∇f(x, y) = 〈4x− 4, 6y〉
so if (x, y) is a critical point, 4x− 4 = 0 and 6y = 0, or x = 1 and y = 0. The point
(1, 0) appears in the region x2 + y2 ≤ 16, so is a critical point.
• Step 2: Find the max/min values of f at the critical points. This would be f(1, 0) =
2− 4− 5 = −7.
• Step 3: Find the global max/min of f on the boundary. On the boundary, we have a

new constraint g(x, y) = 16 where g(x, y) = x2 + y2. By the method of Lagrange
multipliers, the Lagrange critical points happen when ∇f(x, y) = 〈4x − 4, 6y〉 is
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parallel to ∇g(x, y) = 〈2x, 2y〉. This happens either when ∇g(x, y) is zero or when
there is a number λ such that∇f(x, y) = λ∇g(x, y).

– If ∇g(x, y) = 〈0, 0〉, this means x = y = 0, which contradicts the constraint
x2 + y2 = 16.

– Suppose there is a number λ such that 〈4x − 4, 6y〉 = λ〈2x, 2y〉. This means
that

4x− 4 = 2λx, 6y = 2λy,

so from the second equation, either λ = 3 or y = 0.
∗ If λ = 3, then the �rst equation says 4x− 4 = 6x, or 2x = −4, or x = −2.

From this, x2 + y2 = 16 becomes y2 = 12, so y =
√
12 or −

√
12. So we

obtain two Lagrange critical points (−2,
√
12) and (−2,−

√
12).

∗ If y = 0, then x2+y2 = 16 becomes x2 = 16, so x = 4 or−4. So we obtain
two Lagrange critical points (4, 0) and (−4, 0).

At the four Lagrange critical points, (−2,
√
12), (−2,−

√
12), (4, 0) and (−4, 0), the

values of f are

f(−2,
√
12) = 8 + 36 + 8− 5 = 47

f(−2,−
√
12) = 8 + 36 + 8− 5 = 47

f(4, 0) = 32− 16− 5 = 11

f(−4, 0) = 32 + 16− 5 = 43

So the global maximum value on the boundary is 47 and the global minimum value
on the 11.
• Step 4: Compare the values from Step 2 and Step 3 and take the max/min. The global

maximum is 47 and the global minimum is −7.
(3) Use the 4-step process.

• Step 1: Find the critical points. We have

∇f(x, y) = 〈cos(x+ y), cos(x+ y)〉

so the critical points happen when cos(x + y) = 0. This happens when x + y is an
odd integer times π

2
(such as π

2
, 3π

2
, −π

2
).

• Step 2: Find the max/min values of f at the critical points. We have x+ y equal to an
odd integer times π

2
, so sin(x + y) is either 1 or −1. So the maximum value on the

critical points is 1 and the minimum value on the critical points is −1.
• Step 3: Find the global max/min of f on the boundary. On the boundary we have

another constraint g(x, y) = 3 where g(x, y) = x2+xy+y2. Lagrange critical points
are when∇f(x, y) = 〈cos(x+ y), cos(x+ y)〉 is parallel to∇g(x, y) = 〈2x+ y, x+
2y〉. This happens when either ∇g(x, y) is zero or there is a number λ such that
∇f(x, y) = λ∇g(x, y).

– If ∇g(x, y) = 〈0, 0〉, this means 2x + y = 0 and x + 2y = 0. Subtracting the
second equation from the �rst equation, we get x− y = 0, or x = y. Plugging
this back into 2x+ y = 0, we get 3x = 0, or x = 0. So x = y = 0. This con�icts
with the constraint x2 + xy + y2 = 3.

– If there is a number λ such that 〈cos(x + y), cos(x + y)〉 = λ〈2x + y, x + 2y〉,
this means λ(2x+ y) = λ(x+ 2y), or λ(x− y) = 0. So either λ = 0 or x = y.
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∗ If λ = 0, then cos(x+ y) = 0, so∇f(x, y) = 〈0, 0〉, so this case is analyzed
already.
∗ If x = y, then the constraint x2+xy+ y2 = 3 becomes 3x2 = 3, or x2 = 1,

so x = 1 or x = −1. On (1, 1) and (−1,−1), the values of f are sin(2) and
sin(−2).

• Step 4: Compare the values from Step 2 and Step 3 and take the max/min. So the
global maximum value of f is 1, and the global minimum value of f is −1.

(4) Use the 4-step process.
• Step 1: Find the critical points. Note

∇f(x, y, z) = 〈yz, xz, xy〉,
so this is zero if yz = 0, xz = 0, and xy = 0. The �rst equation means either y = 0
or z = 0. Either way, f(x, y, z) = xyz is 0 on a critical point.
• Step 2: Find the max/min values of f at the critical points. This is already dealt above.
• Step 3: Find the global max/min of f on the boundary. On the boundary, we have a

constraint g(x, y, z) = 1, where g(x, y, z) = x2+y2+z2. Lagrange critical points hap-
pen when ∇f(x, y, z) = 〈yz, xz, xy〉 are parallel to ∇g(x, y, z) = 〈2x, 2y, 2z〉. This
happens either when∇g(x, y, z) is zero or there is a numberλ such that∇f(x, y, z) =
λ∇g(x, y, z).

– If 〈2x, 2y, 2z〉 = 〈0, 0, 0〉, x = y = z = 0. This contradicts with the constraint
x2 + y2 + z2 = 1.

– If there is a number λ such that∇f(x, y, z) = λ∇g(x, y, z), we have
yz = 2λx, xz = 2λy, xy = 2λz

So
xyz = 2λx2, xyz = 2λy2, xyz = 2λz2

so 2λx2 = 2λy2 = 2λz2. So either λ = 0 or x2 = y2 = z2.
∗ If λ = 0, then ∇f(x, y, z) = 〈0, 0, 0〉, so this is already deal with.
∗ If x2 = y2 = z2, then from x2+ y2+ z2 = 1, we have x, y, z equal to either

1√
3

or − 1√
3
. So xyz is either 1

3
√
3

or − 1
3
√
3
.

• Step 4: Compare the values from Step 2 and Step 3 and take the max/min. The global
maximum value is 1

3
√
3
, and the global minimum value is − 1

3
√
3
.

(5) Use the 4-step process.
• Step 1: Find the critical points. Note

∇f(x, y, z) = 〈2x, 2y, 2z〉
So the critical point is (0, 0, 0).
• Step 2: Find the max/min values of f at the critical points. On the critical point,
f(0, 0, 0) = 0.
• Step 3: Find the global max/min of f on the boundary. On the boundary we have an

extra constraint g(x, y, z) = 1 where g(x, y, z) = x4 + y4 + z4. Lagrange critical
points happen when ∇f(x, y, z) is parallel to ∇g(x, y, z) = 〈4x3, 4y3, 4z3〉. This
happens either when ∇g(x, y, z) is zero or when there is λ such that ∇f(x, y, z) =
λ∇g(x, y, z).

– If∇g(x, y, z) = 〈0, 0, 0〉, then x = y = z = 0, which contradicts the constraint
x4 + y4 + z4 = 1.
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– If there is λ such that 〈2x, 2y, 2z〉 = λ〈4x3, 4y3, 4z3〉, we have
2x = 4λx3, 2y = 4λy3, 2z = 4λz3

From the �rst equation, either x = 0 or 2 = 4λx2.
∗ If x = 0, the second equation tells either y = 0 or 2 = 4λy2.
· If y = 0, then x = y = 0 implies z4 = 1, so z2 = 1. So the value of f is 1.
· If 2 = 4λy2, then the third equation tells either z = 0 or 2 = 4λz2.

If z = 0, then x = z = 0 implies y4 = 1, so y2 = 1. So the value of f is 1.
If 2 = 4λz2, then y2 = 1

2λ
= z2 while x = 0, so 2y4 = 1 or y4 = 1

2
, so

y2 = 1√
2
= z2, so the value of f is 2√

2
=
√
2.

∗ If 2 = 4λx2, then x2 = 1
2λ

. The second equation tells either y = 0 or
2 = 4λy2.
· If y = 0, then the third equation tells either z = 0 or 2 = 4λz2.

If z = 0, then y = z = 0 implies that x4 = 1, or x2 = 1. So the value of
f is 1.
If 2 = 4λz2, then z2 = 1

2λ
. So x2 = z2 while y = 0, so 2x4 = 1, or x4 = 1

2
,

or x2 = 1√
2
= z2. So the value of f is

√
2.

∗ If 2 = 4λy2, then y2 = 1
2λ

= x2. The third equation tells either z = 0 or
2 = 4λz2.
· If z = 0, then 2x4 = 1, or x4 = 1

2
, or x2 = 1√

2
= y2, so the value of f is√

2.
· If 2 = 4λz2, then z2 = 1

2λ
= x2 = y2, so 3x4 = 1, or x4 = 1

3
, or x2 = 1√

3
,

so the value of f is
√
3.

• Step 4: Compare the values from Step 2 and Step 3 and take the max/min. The global
maximum value is

√
3, and the global minimum value is 0.

(6) Use the 4-step process.
• Step 1: Find the critical points. Note

∇f(x, y, z) = 〈2x, 2y, 2z〉
so the critical point is (0, 0, 0).
• Step 2: Find the max/min values of f at the critical points. On the critical point
f(0, 0, 0) = 0.
• Step 3: Find the global max/min of f on the boundary. On the boudnary there is a

constraint g(x, y, z) = 1 where g(x, y, z) = x2 + y2 + z2 + xy − xz − yz. Lagrange
critical points happen when∇f(x, y, z) is parallel to∇g(x, y, z) = 〈2x+ y− z, 2y+
x− z, 2z−x− y〉. This happens when either∇g(x, y, z) is zero or there is a number
λ such that∇f(x, y, z) = λ∇g(x, y, z).

– If ∇g(x, y, z) = 〈0, 0, 0〉, we have
2x+ y − z = 0, 2y + x− z = 0, 2z − x− y = 0

If you add all three, we get 2x + 2y = 0, or x + y = 0. So 2z = 0, so z = 0.
So 2x + y = x = 0, so x = 0, and y = 0. But x = y = z = 0 contradicts the
constraint x2 + y2 + z2 + xy − xz − yz = 0.

– If there is λ such that∇f(x, y, z) = λ∇g(x, y, z) we have
2x = λ(2x+ y − z), 2y = λ(2y + x− z), 2z = λ(2z − x− y)
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If you subtract the second equation from the �rst equation, you get
2(x− y) = λ(x− y),

so either x− y = 0 or λ = 2.
∗ If x− y = 0, then x = y, so we have

2x = λ(3x− z), z = λ(z − x)
If you add them you get

2x+ z = 2λx

so z = 2(λ − 1)x. On the other hand, the second equation tells you λx =
(λ− 1)z, so
λx = (λ− 1)z = 2(λ− 1)2x = (2λ2 − 4λ+ 2)x

so either x = 0 or λ = 2λ2 − 4λ+ 2.
· If x = 0, then y = 0, so the constraint becomes z2 = 1, so the value of f

is 1.
· If λ = 2λ2 − 4λ+ 2, then 2λ2 − 5λ+ 2 = 0, so (2λ− 1)(λ− 2) = 0, so

either λ = 1
2

or λ = 2.
If λ = 1

2
, then we have

2x =
1

2
(3x− z), z =

1

2
(z − x)

or
4x = 3x− z, 2z = z − x

or z = −x. So x = y = −z. The constraint becomes 6x2 = 1, or x2 = 1
6
,

so the value of f is 1
2
.

If λ = 2, then we have
2x = 2(3x− z), z = 2(z − x),

or
2x = 6x− 2z, z = 2z − 2x

or 2x = z. The constraint becomes 3x2 = 1, or x2 = 1
3
. So the value of f

is 2.
∗ If λ = 2, then we have
x = 2x+ y − z, y = 2y + x− z, z = 2z − x− y,
so x+ y = z. The constraint becomes

x2 + y2 + (x+ y)2 + xy − (x+ y)2 = 1,

or x2 + xy + y2 = 1. The value of f is then x2 + y2 + (x + y)2 = 2x2 +
2xy + 2y2 = 2.

• Step 4: Compare the values from Step 2 and Step 3 and take the max/min. So the
global maximum is 2 and the global minimum is 0.

�

Exercise 3. Find the global maximum and minimum values of f subject to the given constraint.
(1) f(x, y) = x2y, on x2 + y2 = 1, y ≥ 0.
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(2) f(x, y) = e−x
2−y2(x2 + 2y2), on x2 + y2 = 4, x+ y ≥ 0.

(3) f(x, y, z) = xyz, on x2 + y2 + z2 = 3, z ≥ 0.

Solution.

(1) Use the 4-step process.
• Step 1: Find the Lagrange critical points. This happens when∇f(x, y) = 〈2xy, x2〉 is

parallel to ∇g(x, y), where g(x, y) = x2 + y2. So ∇g(x, y) = 〈2x, 2y〉. This happens
when either∇g(x, y) is zero or there is a number λ such that∇f(x, y) = λ∇g(x, y).

– If∇g(x, y) = 〈0, 0〉, then x = y = 0, which contradicts the constraint x2+y2 =
1.

– If there is λ such that∇f(x, y) = λ∇g(x, y), we have

2xy = 2λx, x2 = 2λy

so 2xy2 = 2λxy = x3. Thus either x = 0 or 2y2 = x2.
∗ If x = 0, then the value of f is 0.
∗ If 2y2 = x2, then the constraint becomes 3y2 = 1, or y2 = 1

3
. So y = 1√

3
or

− 1√
3
, but the latter is excluded as we also have y ≥ 0. So y = 1√

3
, x2 = 2

3
,

so the value of f is 2
3
√
3
.

• Step 2: Find the max/min values of f at the critical points. We did this earlier with
Step 1.
• Step 3: Find the global max/min of f on the boundary. The boundary are when y = 0,

so x = 1 or x = −1. In any case, the value of f is 0.
• Step 4: Compare the values from Step 2 and Step 3 and take the max/min. So the

global maximum is 2
3
√
3

and the global minimum is 0.
(2) Use the 4-step process.

• Step 1: Find the Lagrange critical points. Note x2 + y2 = 4, so f(x, y) = e−4(4 + y2).
So ∇f(x, y) = 〈0, 2e−4y〉. Lagrange critical points are when ∇f(x, y) = 〈0, 2e−4y〉
is parallel to ∇g(x, y) where g(x, y) = x2 + y2. So ∇g(x, y) = 〈2x, 2y〉. This can
only happen when x = 0. So y2 = 4, so y = 2 or y = −2. Since x+ y ≥ 0, y = 2. So
(0, 2) is a Lagrange critical point.
• Step 2: Find the max/min values of f at the critical points. At (0, 2), the value of f is
8e−4.
• Step 3: Find the global max/min of f on the boundary. The boundary points are when
x+ y = 0 and x2 + y2 = 4. Since y = −x, so 2x2 = 4 or x2 = 2 or x =

√
2 or −

√
2.

Then y2 = 2, so the value of f is 6e−4.
• Step 4: Compare the values from Step 2 and Step 3 and take the max/min. The global

maximum is 8e−4 and the global minimum is 6e−4.
(3) Use the 4-step process.

• Step 1: Find the Lagrange critical points. They happen when∇f(x, y, z) = 〈yz, xz, xy〉
is parallel to∇g(x, y, z)where g(x, y, z) = x2+y2+z2. So∇g(x, y, z) = 〈2x, 2y, 2z〉.
This is the case when either ∇g(x, y, z) is zero, or there is a number λ such that
∇f(x, y, z) = λ∇g(x, y, z).

– If ∇g(x, y, z) is zero, then x = y = z = 0, which contradicts the constraint
x2 + y2 + z2 = 3.
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– If there is λ such that∇f(x, y, z) = λ∇g(x, y, z), we have

yz = 2λx, xz = 2λy, xy = 2λz

so
xyz = 2λx2, xyz = 2λy2, xyz = 2λz2

so 2λx2 = 2λy2 = 2λz2. So either λ = 0 or x2 = y2 = z2.
∗ If λ = 0, then yz = xz = xy = 0, so in any case xyz = 0.
∗ If x2 = y2 = z2, then the constraint becomes 3x2 = 3, or x2 = 1, or x = 1

or −1. So y = 1 or y = −1, and z = 1 or z = −1. Note z ≥ 0, so z = 1
only happens. In any case, the values of f are either 1 or −1.

• Step 2: Find the max/min values of f at the critical points. The max is 1 and the min
is −1.
• Step 3: Find the global max/min of f on the boundary. On the boundary, it is x2+y2 =
3 and z = 0. On that, xyz = 0.
• Step 4: Compare the values from Step 2 and Step 3 and take the max/min. The global

max is 1 and the global min is −1.
�

Exercise 4. Find the global maximum and minimum values of f on the given region.
(1) f(x, y) = x3 − 12x+ y3 − 12y on the region

D = {(x, y) | (x+ 2)2 + (y + 2)2 ≤ 13, x ≥ −5}

(2) f(x, y) = x+ y on the region

D = {(x, y) | 0 ≤ x ≤ 1, ex2 ≤ y ≤ ex}

(3) f(x, y, z) = x4 + y + z2 on the region

D = {(x, y, z) | x2 + y2 + z2 ≤ 1, x ≥ 0, y ≥ 0}

(4) f(x, y, z) = xz + yz − xy on the region

D = {(x, y, z) | z2 ≥ x2 + y2, (2− z)2 ≥ x2 + y2, 0 ≤ z ≤ 2}

Solution.
(1) Use the 4-step process.

• Step 1: Find the critical points. The critical points are when ∇f(x, y) = 〈0, 0〉, so

〈3x2 − 12, 3y2 − 12〉 = 〈0, 0〉

This happens when x2 = 4 and y2 = 4, so x = 2 or −2 and y = 2 and y = −2. Since
(x + 2)2 + (y + 2)2 ≤ 13, (2, 2) is excluded, whereas (2,−2), (−2, 2) and (−2,−2)
are okay. So, there are three critical points, (2,−2), (−2, 2), (−2,−2).
• Step 2: Find the max/min values of f at the critical points. At (2,−2), f(2,−2) =
8 − 24 − 8 + 24 = 0. At (−2, 2), f(−2, 2) = −8 + 24 + 8 − 24 = 0. At (−2,−2),
f(−2,−2) = −8 + 24− 8 + 24 = 32. So, the max at the critical points is 32, and the
min at the critical points is 0.
• Step 3: Find the global max/min of f on the boundary. The boundary is consisted of

two parts, the vertical line x = −5 and the arc (x+ 2)2 + (y + 2)2 = 13.
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– If x = −5, then (x+2)2+(y+2)2 ≤ 13 implies (y+2)2 ≤ 4, so−4 ≤ y ≤ 0. On
this, the constrained optimization problem is to optimize f(−5, y) = −125 +
60 + y3 − 12y = y3 − 12y − 65 on −4 ≤ y ≤ 0.
∗ Critical points are when f ′(y) = 3y2 − 12 = 0, or y2 = 4, or y = 2

or −2. Since −4 ≤ y ≤ 0, y = −2 is the only possibility. At y = −2,
f(−2) = −8 + 24− 65 = −49.
∗ Boundary points are y = −4 and y = 0, at which f(−4) = −64+48−65 =
−81, and f(0) = −65.

So, on the vertical line, the max is −49 and the min is −81.
– If (x+2)2+(y+2)2 = 13, the boundary points are x = −5, so y = −4 or y = 0.

So (−5,−4) and (−5, 0) are boundary points. This is a constrained optimization
with boundary, where the constraint is g(x, y) = 13, where g(x, y) = (x+2)2+
(y+2)2. So by Lagrange multipliers, we want∇f(x, y) = 〈3x2− 12, 3y2− 12〉
parallel to ∇g(x, y) = 〈2(x + 2), 2(y + 2)〉. This happens either when ∇g is
zero or there is λ such that∇f(x, y) = λ∇g(x, y).
∗ If ∇g(x, y) is zero, this means x = −2 and y = −2. This does not satisfy

the constraint (x+2)2+(y+2)2 = 13, so this possibility does not happen.
∗ If there is λ such that∇f(x, y) = λ∇g(x, y), we have

3(x2 − 4) = 2λ(x+ 2), 3(y2 − 4) = 2λ(y + 2).

From the �rst equation, we have either x+ 2 = 0 or 3(x− 2) = 2λ. From
the second equation, we have either y + 2 = 0 or 3(y − 2) = 2λ. Thus
either x = −2, y = −2 or x = y.
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If x = −2, then the constraint says that (y+2)2 = 13, so y = −2+
√
13 or

y = −2−
√
13. We have f(−2,−2 +

√
13) = −8 + 24 + (−2 +

√
13)3 −

12(−2 +
√
13) = −46 + 13

√
13 and f(−2,−2−

√
13) = −46− 13

√
13.

If y = −2, then the constraint says that (x + 2)2 = 13, so x = −2 +
√
13

or x = −2−
√
13. But x = −2−

√
13 is outside the range x ≥ −5, so only

x = −2 +
√
13 is possible. Then f(−2 +

√
13,−2) = −46 + 13

√
13.

If x = y, then (x + 2)2 = 13
2

, so x = −2 +
√

13
2

or −2 −
√

13
2

. Both lie in

x ≥ −5, so the �nal Lagrange critical points are (−2 +
√

13
2
,−2 +

√
13
2
)

and (−2−
√

13
2
,−2−

√
13
2
). Then

f(−2 +
√

13

2
,−2 +

√
13

2
) = 2(−2 +

√
13

2
)3 − 24(−2 +

√
13

2
)

= 2(−8 + 12

√
13

2
− 6 · 13

2
+

13

2

√
13

2
) + 48− 24

√
13

2

= 2(−47 + 37

2

√
13

2
) + 48− 24

√
13

2

= −46 + 13

√
13

2

and f(−2−
√

13
2
,−2−

√
13
2
) = −46− 13

√
13
2

.
Thus, the max on the arc is−46+13

√
13 and the min on the arc is−46−13

√
13.

So the max on the boundary is −46 + 13
√
13 and the min on the boundary is −46−

13
√
13.

• Step 4: Compare the values from Step 2 and Step 3 and take the max/min. The global
max is 32 and the global min is −46− 13

√
13.

(2) Use the 4-step process.
• Step 1: Find the critical points. As ∇f(x, y) = 〈1, 1〉, there is no critical point.
• Step 2 is thus skipped.
• Step 3: Find the global max/min of f on the boundary. The boundary is divided into

three parts, the vertical line {(0, y) | 0 ≤ y ≤ 1}, the upper curve {(x, y) | 0 ≤ x ≤
1, y = ex}, and the lower curve {(x, y) | 0 ≤ x ≤ 1, y = ex2}.
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– On the vertical line, the function becomes f(y) = y, and its max on 0 ≤ y ≤ 1
is obviously 1 and its min is 0.

– On the upper curve {(x, y) | 0 ≤ x ≤ 1, y = ex}, we are solving constrained
optimization of f(x, y) with constraint g(x, y) = 0 where g(x, y) = y − ex,
with boundary. Note the boundary points are when x = 0 and x = 1, which
corresponds to y = 1 and y = e. The Lagrange critical points happen when
∇f(x, y) = 〈1, 1〉 is parallel to ∇g(x, y) = 〈−ex, 1〉. This happens only if
−ex = 1, which is impossible, so there is no Lagrange critical point. On the
boundary, (0, 1) gives f(0, 1) = 1, and on (1, e), f(1, e) = e+ 1. So the max is
e+ 1 and the min is 1.

– On the lower curve {(x, y) | 0 ≤ x ≤ 1, y = ex2}, we are solving constrained
optimization of f(x, y) with constraint g(x, y) = 0 where g(x, y) = y − ex2,
with boundary. Note the boundary points are when x = 0 and x = 1, which
corresponds to y = 0 and y = e. The Lagrange critical points happen when
∇f(x, y) = 〈1, 1〉 is parallel to ∇g(x, y) = 〈−2ex, 1〉. This happens only if
−2ex = 1, or x = − 1

2e
, which is out of range, so there is no Lagrange critical

point. On the boundary, (0, 0) gives f(0, 0) = 0, and on (1, e), f(1, e) = e+ 1,
so the max is e+ 1 and the min is 0.

So the max on the boundary is e+ 1 and the min on the boundary is 0.
• Step 4: Compare the values from Step 2 and Step 3 and take the max/min. So the

global max is e+ 1 and the global min is 0.
(3) Use the 4-step process.

• Step 1: Find the critical points. Note that

∇f(x, y, z) = 〈4x3, 1, 2z〉,

so this is never a zero vector as the second component is 1. So there is no critical
point.
• Step 2 is skipped.
• Step 3: Find the global max/min of f on the boundary. The boundary is divided into

three parts, the spherical part x2 + y2 + z2 = 1, x, y ≥ 0, the xz-plane part, namely
y = 0, x2 + z2 ≤ 1 and x ≥ 0, and the yz-plane part, namely x = 0, y2 + z2 ≤ 1 and
y ≥ 0.
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– The problem over the spherical part x2 + y2 + z2 = 1, x, y ≥ 0 is a constrained
optimization with boundary. The constraint function is g(x, y, z) = x2 + y2 +
z2, which is set to be 1. Thus the Lagrange critical points are obtained when
∇f(x, y, z) = 〈4x3, 1, 2z〉 is parallel to ∇g(x, y, z) = 〈2x, 2y, 2z〉. This hap-
pens either when∇g is zero or there is λ such that 〈4x3, 1, 2z〉 = λ〈2x, 2y, 2z〉.
The former case happens when x = y = z = 0, which is not allowed because of
the constraint x2 + y2 + z2 = 1, so the latter case is the only possibility, where
we have

4x3 = 2λx, 1 = 2λy, 2z = 2λz.

The third equation tells either λ = 1 or z = 0. If λ = 1, then we have

4x3 = 2x, 1 = 2y,
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so y = 1
2
, and either x = 0 or 2x2 = 1, so x2 = 1

2
, so x = 1√

2
(because x ≥ 0).

The case x = 0 or z = 0 is on the boundary so they will be dealt later anyways.
Thus we only need to consider y = 1

2
and x = 1√

2
. Then x2 + y2 + z2 = 1 gives

z2 = 1
4
, so z = 1

2
or z = −1

2
. Thus we get points ( 1√

2
, 1
2
, 1
2
) and ( 1√

2
, 1
2
,−1

2
), on

which we have f = 1.
The boundary is naturally divided into two parts, x = 0, y = 0.
∗ If x = 0, the function to be maximized/minimized is f(y, z) = y+ z2, with

constraint y2 + z2 = 1, y ≥ 0. This again is constrained optimization.
Note Lagrange critical points happen when ∇f(y, z) = 〈1, 2z〉 is parallel
to ∇g(y, z) = 〈2y, 2z〉, where g(y, z) = y2 + z2. So either ∇g is zero or
there is λ such that∇f(y, z) = λ∇g(y, z).
If ∇g(y, z) = 〈0, 0〉, then y = z = 0, which is not allowed because of the
constraint y2 + z2 = 1. So there is λ such that ∇f(y, z) = λ∇g(y, z),
which means

1 = 2λy, 2z = 2λz

From the second equation, either z = 0 or λ = 1. If z = 0, then y2 = 1, so
y = 1 (by y ≥ 0), so the value of f is 1. If λ = 1, then y = 1

2
, so z2 = 3

4
, so

z =
√
3
2

or −
√
3
2

. So the value of f is 1
2
+ 3

4
= 5

4
. There is boundary, y = 0.

If y = 0, then z2 = 1, so z = 1 or z = −1, so the value of f is 1. So the
max on this boundary is 5

4
, and the min on this boundary is 1.

∗ If y = 0, the function to be maximized/minimized is f(x, z) = x4 + z2,
with constraint x2 + z2 = 1, x ≥ 0. This is constrained optimization.
Lagrange critical points happen when ∇f(x, z) = 〈4x3, 2z〉 is parallel to
∇g(x, z) = 〈2x, 2z〉, where g(x, z) = x2+z2. So either∇g is zero or there
is λ such that∇f(x, z) = λ∇g(x, z).
If ∇g(x, z) = 〈0, 0〉, then x = z = 0, which is not allowed because of the
constraint x2 + z2 = 1. So there is λ such that ∇f(x, z) = λ∇g(x, z),
which means

4x3 = 2λx, 2z = 2λz

The second equation tells either z = 0 or λ = 1. If z = 0, then y = z = 0
implies x2 = 1 or x = 1 (because x ≥ 0). Then the value of f is 1. If λ = 1,
then 4x3 = 2x, so either x = 0 or 2x2 = 1, or x = 1√

2
(by x ≥ 0). The

value at x = 0 is 1, and the value at x = 1√
2

is, as y = 0, z = 1√
2
, so the

value is 1
4
+ 1

2
= 3

4
. We’ve already included the boundary which are x = 0.

So the max is 1 and the min is 3
4
.

So the max on the boundary of spherical part is 5
4

and the min on the boundary
of spherical part is 3

4
. Since critical point has value 1, these are the global max

and min on the spherical part.
– If y = 0, then f becomes f(x, z) = x4+z2, and the region becomes x2+z2 ≤ 1

with x ≥ 0. The boundary that is not considered in the boundary of spherical
part is x = 0, y = 0. Then f(z) = z2 with z2 ≤ 1, so the max is 1 and the min
is 0. For the critical points, we want 〈4x3, 2z〉 = 〈0, 0〉, which happens at (0, 0)
anyways, so the new value is 0.

34



– If x = 0, then f becomes f(y, z) = y+ z2, and the region becomes y2 + z2 ≤ 1
with y ≥ 0. The boundaries are all already considered, and the critical point
doesn’t happen as fy(y, z) = 1 6= 0.

• Step 4: Compare the values from Step 2 and Step 3 and take the max/min. So we
conclude that the max is 5

4
and the min is 0.

(4) Use the 4-step process.
• Step 1: Find the critical points. The critical points happen when ∇f is zero, so 〈z −
y, z − x, x+ y〉 = 〈0, 0, 0〉. This happens when x = y = z = 0. This is indeed in the
region, and the value is 0.
• Step 2: Find the max/min values of f at the critical points. We did this above.
• Step 3: Find the global max/min of f on the boundary. The boundary is naturally

divided into two parts, z2 = x2 + y2 and 0 ≤ z ≤ 1, and (2 − z)2 = x2 + y2 and
1 ≤ z ≤ 2.

– In the �rst region, the Lagrange critical points happen when 〈z−y, z−x, x+y〉
is parallel to 〈2x, 2y,−2z〉. If 〈2x, 2y,−2z〉 is zero, then x = y = z = 0 and
this is something we already considered. If not,

〈z − y, z − x, x+ y〉 = λ〈2x, 2y,−2z〉

or

z − y = 2λx, z − x = 2λy, x+ y = −2λz.

Adding the �rst two we get

2z − x− y = 2λ(x+ y)

or
2z = (2λ+ 1)(x+ y) = −2λ(2λ+ 1)z
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so (4λ2 + 2λ + 2)z = 0. Since 4λ2 + 2λ + 2 > 0, z = 0. Then z2 = x2 + y2

implies x = y = 0, which is already considered.
The boundary are x2 + y2 = 1 with z = 1, and (0, 0, 0). The latter is already
considered, and the former gives you a function f(x, y) = x + y − xy to be
optimized on x2 + y2 = 1. This is again Lagrange multipliers, where we want

〈1− y, 1− x〉 = λ〈2x, 2y〉
or

1− y = 2λx, 1− x = 2λy

Subtracting, we get
x− y = 2λ(x− y)

so either x = y or λ = 1
2
. If λ = 1

2
we have 1 = x + y. So either x = y or

x + y = 1. If x = y we have x = y = ± 1√
2

from the constraints, from which
we have f = ±

√
2− 2. If x+ y = 1, from constraints we have

x2 + (1− x)2 = 1,

or −2x + 2x2 = 0, so either x = 0 or x = 1. At (0, 1) we have f = 1 and at
(1, 0) again f = 1. So on this boundary the max is 1 and the min is −

√
2− 2.

– In the second region, the Lagrange critical points happen when 〈z−y, z−x, x+
y〉 is parallel to 〈2x, 2y,−2z + 4〉. If 〈2x, 2y, 4 − 2z〉 is zero, then x = y = 0
and z = 2, which gives f = 0. If not,

〈z − y, z − x, x+ y〉 = λ〈2x, 2y, 4− 2z〉
z − y = 2λx, z − x = 2λy, x+ y = 4λ− 2λz.

Adding the �rst two we get
2z − x− y = 2λ(x+ y)

or
2z = (2λ+ 1)(x+ y) = −2λ(2λ+ 1)z

so (4λ2+2λ+2)z = 0. Since 4λ2+2λ+2 > 0, z = 0. This is not in the region.
The boundary are either the circle we already considered or (0, 0, 2), which is
also considered.

• Step 4: Compare the values from Step 2 and Step 3 and take the max/min. Thus the
max is 1 and the min is −

√
2− 2.

�

19. Lagrange multipliers II: Multiple constraints

Exercise 1. Find the boundary of the region, and divide it naturally into parts.
(1) {(x, y) | 0 ≤ x+ y ≤ 1}
(2) {(x, y) | x2 + 4y2 ≤ 4, x ≥ 1}
(3) {(x, y) | x+ 2y2 ≤ 0, x+ y ≤ −1}
(4) {(x, y) | 0 ≤ x ≤ 2, 0 ≤ y ≤ 2}
(5) {(x, y, z) | x2 + y2 + z2 ≤ 1, x+ y ≤ 1, x ≥ 1

2
}

(6) {(x, y, z) | x2 + y2 = z2, x+ y ≥ 1, z ≤ 5}
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Solution.

(1) It divides into two parts,
{(x, y) | x+ y = 0}

{(x, y) | x+ y = 1}
(2) It divides into two parts,

{(x, y) | x2 + 4y2 = 4, x ≥ 1}

{(x, y) | x2 + 4y2 ≤ 4, x = 1}
(3) It divides into two parts,

{(x, y) | x+ 2y2 = 0, x+ y ≤ −1}

{(x, y) | x+ 2y2 ≤ 0, x+ y = −1}
(4) It divides into four parts,

{(x, y) | x = 0, 0 ≤ y ≤ 2}

{(x, y) | x = 2, 0 ≤ y ≤ 2}

{(x, y) | 0 ≤ x ≤ 2, y = 0}

{(x, y) | 0 ≤ x ≤ 2, y = 2}
(5) It divides into three parts,

{(x, y, z) | x2 + y2 + z2 = 1, x+ y ≤ 1, x ≥ 1

2
}

{(x, y, z) | x2 + y2 + z2 ≤ 1, x+ y = 1, x ≥ 1

2
}

{(x, y, z) | x2 + y2 + z2 ≤ 1, x+ y ≤ 1, x =
1

2
}

(6) It divides into two parts,

{(x, y, z) | x2 + y2 = z2, x+ y = 1, z ≤ 5}

{(x, y, z) | x2 + y2 = z2, x+ y ≥ 1, z = 5}
�

Exercise 2. Determine whether there is a global maximum or a global minimum of a function f
on a region D, and if they exist, �nd the values.

(1) f(x, y, z) = z on D = {(x, y, z) | x2 + y2 + z2 = 1, x+ y − z = 0}
(2) f(x, y, z) = x2 + y2 on D = {(x, y, z) | x2 + y2 + z2 = 50, x− z = 0}

Solution.
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(1) Note that the region is compact. The constraints are g(x, y, z) = 1 and h(x, y, z) = 0
where g(x, y, z) = x2 + y2 + z2 and h(x, y, z) = x+ y − z. Thus

∇f(x, y, z) = 〈0, 0, 1〉, ∇g(x, y, z) = 〈2x, 2y, 2z〉, ∇h(x, y, z) = 〈1, 1,−1〉

Lagrange critical points are when either∇g(x, y, z) or∇h(x, y, z) are zero, or∇f(x, y, z) =
λ∇g(x, y, z)+µ∇h(x, y, z). Note that∇h(x, y, z) is not zero, and∇g(x, y, z) = 〈2x, 2y, 2z〉
is zero if x = y = z = 0, which does not lie inD because of the constraint x2+y2+z2 = 1.
Thus we need to solve

∇f(x, y, z) = λ∇g(x, y, z) + µ∇h(x, y, z)

or

0 = 2λx+ µ, 0 = 2λy + µ, 1 = 2λz − µ

From the �rst two equations, 2λx = 2λy, so either λ = 0 or x = y.
• If λ = 0, we have µ = 0 and 1 = −µ, which is a contradiction.
• If x = y, the constraints say 2x2 + z2 = 1 and 2x = z. Thus, 6x2 = 1, or x = 1√

6
or

− 1√
6
. Thus the Lagrange critical points are ( 1√

6
, 1√

6
, 2√

6
) and (− 1√

6
,− 1√

6
,− 2√

6
).

As there is no boundary, the global maximum is 2√
6
, and the global minimum is − 2√

6
.

(2) Since the region is compact, we use the 4-step process.
• Step 1. Find the Lagrange critical points. The constraints are g(x, y, z) = 50 and
h(x, y, z) = 0 where g(x, y, z) = x2 + y2 + z2 and h(x, y, z) = x− z. This happens
either when ∇g(x, y, z) = 〈2x, 2y, 2z〉 or ∇h(x, y, z) = 〈1, 0,−1〉 is zero, or when
∇f(x, y, z) = λ∇g(x, y, z) + µ∇h(x, y, z). The former case can only happen when
2x = 2y = 2z = 0, which does not satisfy x2 + y2 + z2 = 50. Thus we need to solve

∇f(x, y, z) = λ∇g(x, y, z) + µ∇h(x, y, z)

or

〈2x, 2y, 0〉 = λ〈2x, 2y, 2z〉+ µ〈1, 0,−1〉

or

2x = 2λx+ µ, 2y = 2λy, 0 = 2λz − µ

From the second equation, either λ = 1 or y = 0.
– If λ = 1, we have 2x = 2x + µ or 0 = 2z − µ. So, µ = 0 and z = 0. Then
x − z = 0 means x = 0, so y2 = 50. Thus the Lagrange critical points are
(0,
√
50, 0) and (0,−

√
50, 0).

– If y = 0, then x2 + z2 = 2x2 = 50, so the Lagrange critical points are (5, 0, 5)
and (−5, 0,−5).

• Step 2. Evaluate on the Lagrange critical points. We have f(0,
√
50, 0) = 50, f(0,−

√
50, 0) =

50, f(5, 0, 5) = 25, f(−5, 0,−5) = 25.
• Step 3. Find the max/min on the boundary. There is no boundary.
• Step 4. Compare. The global max is 50 and the global min is 25.

�
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20. Global maxima and minima, continued

Exercise 1. Determine whether the following region is closed, bounded or compact.
(1) {(x, y) | x2 + y2 ≤ 1}
(2) {(x, y) | x2 + y2 < 1}
(3) {(x, y) | x+ y = 0}
(4) {(x, y) | x3 + y3 ≤ 1}
(5) {(x, y) | x4 + y2 ≤ 1}
(6) {(x, y) | x2 + y4 + x ≤ 1, y ≥ 0}
(7) {(x, y, z) | x2 + y2 + z ≤ 1}
(8) {(x, y, z) | x2 + y4 ≤ z2}
(9) {(x, y, z) | x2 + y2 + z2 ≤ 2x+ 2y + 2z, z ≥ 0}

Solution.
(1) Closed and bounded, so compact.
(2) Not closed but bounded, so not compact.
(3) Closed but not bounded (x can go to∞), so not compact.
(4) Closed but not bounded (x can go to +∞ while y goes to −∞), so not compact.
(5) Closed and bounded (|x| ≤ 1 and |y| ≤ 1), so compact.
(6) Closed. To see if it is bounded, note x2+y4+x ≤ 1 is equivalent to (x2+x+ 1

4
)+y4 ≤ 5

4
,

or (x+ 1
2
)2 + y4 ≤ 5

4
, so it is bounded. So it is compact.

(7) Closed, but not bounded (z can go to −∞), so not compact.
(8) Closed, but not bounder (all x, y, z can go to∞), so not compact.
(9) Closed. To see if it is bounded, note x2 + y2 + z2 ≤ 2x+ 2y + 2z can be written as

(x2 − 2x) + (y2 − 2y) + (z2 − 2z) ≤ 0,

or
(x2 − 2x+ 1) + (y2 − 2y + 1) + (z2 − 2z + 1) ≤ 3,

or (x− 1)2 + (y − 1)2 + (z − 1)2 ≤ 3, so it is bounded. So it is compact.
�

Exercise 2. Determine whether f has a global maximum and/or minimum on the region, and if
they exist, �nd the values.

(1) f(x, y) = xy + x+ y, on y ≥ x2

(2) f(x, y) = x2 + y2, on xy ≥ 1
(3) f(x, y) = x2 + 3y2 − 4x− 6y, on x ≥ 0, y ≥ 0

(4) f(x, y) = xye−x
2−y2 , on 2x− y = 0

(5) f(x, y) = x3 + y3 − 3xy, on all real numbers x, y
(6) f(x, y) = 2x2 − 2xy + y2 − 2x, on all real numbers x, y
(7) f(x, y) = x2 + 2y, on 2x+ y2 ≤ 3
(8) f(x, y) = exy, on x3 + y3 = 16
(9) f(x, y, z) = xyz, on xy + 2yz + 2zx = 12, x, y, z ≥ 0

(10) f(x, y, z) = 4x+ 2y + z, on x2 + y + z2 = 1
(11) f(x, y, z) = x ln(x) + y ln(y) + z ln(z)− x+y+z

3
ln(xyz), on x, y, z ≥ 1

Solution. Recall that the “extended 4-step process” is as follows.
• Find critical points.
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• Evaluate on critical points.
• Find the max/min on the boundary.
• Compare to �nd the max/min candidates.
• Identify the “boundary at in�nity.”
• Find the max/min on the “boundary at in�nity.”
• Compare to determine global max/min.

(1) This is (unconstrained) optimization. We use extended 4-step process.
• Find critical points. Since∇f(x, y) = 〈y+1, x+1〉, the critical point happens when
y = −1 and x = −1. Since this lies in the region, (−1,−1) is indeed a critical point.
• Evaluate on critical points. At (−1,−1), f(−1,−1) = −1.
• Find the max/min on the boundary. The boundary is given by y = x2. This is a

constrained optimization problem, where the region is again closed but not bounded.
So we use extended 4-step process.

– Find critical points. Here this means we need to �nd Lagrange critical points,
where the constraint is g(x, y) = 0, g(x, y) = y − x2. So we want ∇f(x, y) =
〈y + 1, x+ 1〉 to be parallel to∇g(x, y) = 〈−2x, 1〉. This happens either when
∇g(x, y) = 〈0, 0〉 or there is λ such that∇f(x, y) = λ∇g(x, y).
∗ Since the second component of∇g(x, y) is 1, this can be never zero.
∗ If ∇f(x, y) = λ∇g(x, y) holds, then y + 1 = −2λx and x + 1 = λ. So,
x = λ− 1, and y = −2λx− 1 = −2λ(λ− 1)− 1 = −2λ2+2λ− 1. We are
under the constraint that y = x2, so−2λ2+2λ−1 = (λ−1)2 = λ2−2λ+1,
so 3λ2 − 4λ + 2 = 0. But this is impossible, since the discriminant is
16− 24 < 0.

Thus there are no (Lagrange) critical points.
– Evaluate on critical points. This is skipped because there are no critical points.
– Find the max/min on the boundary. There is no boundary, so this is skipped.
– Compare to �nd the max/min candidates. There are no max/min candidates.

Already you see here that there are no global max/min on the boundary. Thus,
the rest of the extended 4-step process is unnecessary.

• Compare to �nd the max/min candidates. The max candidate is −1, and the min
candidate is also −1.
• Identify the “boundary at in�nity.” The boundary at in�nity is such that y = +∞ (if
x goes to −∞ or +∞, then y has to be automatically +∞ by y ≥ x2, so this case
contains all the boundary at in�nity).
• Find the max/min on the “boundary at in�nity.” If both x and y go to +∞, which is

certainly possible, f(x, y) goes to +∞ as all the terms xy, x, y go to +∞. So the max
on the boundary at in�nity is +∞. If x = −2 while y goes to +∞, then f(x, y) =
−2y − 2 + y = −y − 2 goes to −∞. So, the min on the boundary at in�nity is −∞.
• Compare to determine global max/min. Because of the previous step, nothing can be

global max or min. So there are no global max/min.
(2) We use extended 4-step process.

• Find critical points. Note ∇f(x, y) = 〈2x, 2y〉, so the critical points are when x =
y = 0. But this doesn’t appear in the region xy ≥ 1, so there are no critical points.
• Evaluate on critical points. This is skipped because there are no critical points.
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• Find the max/min on the boundary. The boundary is xy = 1, which is again closed
but not bounded region. So this is a new constrained optimization problem.

– Find critical points. This means we need to �nd Lagrange critical points, with
constraint g(x, y) = 1, g(x, y) = xy. Since ∇g(x, y) = 〈y, x〉, for ∇f and ∇g
to be parallel, either ∇g is zero or there is λ such that∇f = λ∇g.
∗ If ∇g(x, y) = 〈0, 0〉, this means x = y = 0. But this doesn’t satisfy the

constraint xy = 1, so this is not possible.
∗ If∇f = λ∇g, then 2x = λy and 2y = λx. Substituting, we get 2x = λy =

λ2

2
x, so either x = 0 or 2 = λ2

2
. Note however x = 0 is impossible under the

constraint xy = 1. If 2 = λ2

2
, λ2 = 4, so either λ = 2 or λ = −2. If λ = 2,

then x = y, so xy = 1 implies x2 = 1, so either x = y = 1 or x = y = −1.
If λ = −2 then x = −y. Then the constraint becomes −x2 = 1, which is
impossible.

So the (Lagrange) critical points are (1, 1) and (−1,−1).
– Evaluate on critical points. By above, f(1, 1) = 2, and f(−1,−1) = 2.
– Find the max/min on the boundary. There is no boundary to xy = 1.
– Compare to �nd the max/min candidates. The max candidate is 2 and the min

candidate is 2.
– Identify the “boundary at in�nity.” The boundary at in�nity is either x = ±∞,

at which y has to be 0, or y = ±∞, at which x has to be 0.
– Find the max/min on the “boundary at in�nity.” Either way, the value of f(x, y)

on these boundary at in�nity points is always +∞, so the max on the boundary
at in�nity is +∞, and the min on the boundary at in�nity is +∞.

– Compare to determine global max/min. From above, we see there is no global
maximum, while the global minimum is 2.

• Compare to �nd the max/min candidates. Thus the max candidate and min candidate
are both 2.
• Identify the “boundary at in�nity.” The boundary at in�nity can be anything involving
∞, as long as the signs of x, y match.
• Find the max/min on the “boundary at in�nity.” On the boundary at in�nity, f = +∞.
• Compare to determine global max/min. From above, there is no global maximum

while 2 is the global minimum.
(3) We use extended 4-step process.

• Find critical points. Note∇f(x, y) = 〈2x− 4, 6y− 6〉, so the critical point candidate
is (2, 1). This is in the region, so this is really a critical point.
• Evaluate on critical points. We have f(2, 1) = −7.
• Find the max/min on the boundary. The boundary is consisted of two parts, x = 0

and y ≥ 0, and y = 0 and x ≥ 0.
– If x = 0 and y ≥ 0, f(x, y) becomes f(y) = 3y2 − 6y. This is another uncon-

strained optimization problem, so we use the extended 4-step process.
∗ Find critical points. Since f ′(y) = 6y − 6, critical point is y = 1. This

appears at y ≥ 0, so this is a critical point.
∗ Evaluate on critical points. We have f(1) = −3.
∗ Find the max/min on the boundary. The boundary is y = 0, where the

value is f(0) = −6.
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∗ Compare to �nd the max/min candidates. The max candidate is −3, and
the min candidate is −6.
∗ Identify the “boundary at in�nity.” The boundary at in�nity is just (0,+∞),

which gives f = +∞ (the largest power of y only matters).
∗ Find the max/min on the “boundary at in�nity.” We did this above.
∗ Compare to determine global max/min. So the global max does not exist,

and the global min is −6.
• Compare to �nd the max/min candidates. The global max candidate is −6, while the

global min candidate is −7.
• Identify the “boundary at in�nity.” The boundary at in�nity is either x = +∞ or
y = +∞.
• Find the max/min on the “boundary at in�nity.” In any case, f = +∞.
• Compare to determine global max/min. So the global maximum does not exist, and

the global minimum is −7.
(4) We use extended 4-step process.

• Find critical points. In this case we are looking for Lagrange critical points. Note that

∇f(x, y) = 〈ye−x2−y2 − 2x2ye−x
2−y2 , xe−x

2−y2 − 2xy2e−x
2−y2〉

= 〈y(1− 2x2)e−x
2−y2 , x(1− 2y2)e−x

2−y2〉
and

∇g(x, y) = 〈2,−1〉
where g(x, y) = 2x − y is set to be 0 as a constraint. Lagrange critical points are
when ∇f(x, y) is parallel to ∇g(x, y). Since ∇g(x, y) is never zero, this happens
when there is λ such that∇f(x, y) = λ∇g(x, y). This means that

y(1− 2x2)e−x
2−y2 = 2λ, x(1− 2y2)e−x

2−y2 = −λ
so

(y(1− 2x2) + 2x(1− 2y2))e−x
2−y2 = 0

so
y(1− 2x2) + 2x(1− 2y2) = 0

Using the constraint y = 2x, this becomes
2x(1− 2x2) + 2x(1− 8x2) = 0

so
2x(2− 10x2) = 0

so either x = 0 or 2 − 10x2 = 0, so either x = 0, 1√
5

or − 1√
5
. So Lagrange critcial

points are (0, 0), ( 1√
5
, 2√

5
) and (− 1√

5
,− 2√

5
).

• Evaluate on critical points. On the Lagrange critical points, f(0, 0) = 0, f( 1√
5
, 2√

5
) =

2
5
e−1 and f(− 1√

5
,− 2√

5
) = 2

5
e−1.

• Find the max/min on the boundary. There is no boundary.
• Compare to �nd the max/min candidates. The max candidate is 2

5
e−1 and the min

candidate is 0.
• Identify the “boundary at in�nity.” The boundary at in�nity are (+∞,+∞) and
(−∞,−∞).
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• Find the max/min on the “boundary at in�nity.” Note that limx→+∞ xe
−x2 = limx→+∞

x

ex2
,

which by L’Hopital is equal to limx→+∞
1

2xex2
= 0. Thus, the value at (+∞,+∞) is

0. Similarly, limx→−∞ xe
−x2 = 0, so the value at (−∞,−∞) is 0 as well. So, the

max/min on the boundary at in�nity are 0.
• Compare to determine global max/min. The max/min candidates are thus honest

global max/min, so the global max is 2
5e

and the global min is 0.
(5) We use extended 4-step process.

• Find critical points. Note

∇f(x, y) = 〈3x2 − 3y, 3y2 − 3x〉

so the critical points happen when

3x2 − 3y = 0, 3y2 − 3x,

or if x2 = y and y2 = x. This means that y = x2 = y4. Thus, either y = 0 or 1 = y3.
Thus, either y = 0 or y = 1. In turn, the critical points are (0, 0) and (1, 1).
• Evaluate on critical points. We have f(0, 0) = 0 and f(1, 1) = −1.
• Find the max/min on the boundary. There is no boundary.
• Compare to �nd the max/min candidates. The max candidate is 0 and the min candi-

date is −1.
• Identify the “boundary at in�nity.” The boundary at in�nity is anything that has

either x or y equal to +∞ or −∞.
• Find the max/min on the “boundary at in�nity.” At (+∞, 0), f is+∞, and at (−∞, 0),
f is−∞, so the max on the boundary at in�nity is +∞, and the min on the boundary
at in�nity is −∞.
• Compare to determine global max/min. Thus there are no global max or min.

(6) We use extended 4-step process.
• Find critical points. Note that

∇f(x, y) = 〈4x− 2y − 2,−2x+ 2y〉

so the critical points happen when 4x− 2y− 2 = 0 and−2x+2y = 0. So this means
y = x, so 2x− 2 = 0, or x = y = 1.
• Evaluate on critical points. At the critical point, f(1, 1) = −1.
• Find the max/min on the boundary. There is no boundary.
• Compare to �nd the max/min candidates. The max candidate and the min candidate

are both −1.
• Identify the “boundary at in�nity.” The boundary at in�nity is anything that has

either x or y equal to +∞ or −∞.
• Find the max/min on the “boundary at in�nity.” At (0,+∞), f is +∞, so the max on

the boundary at in�nity is +∞. On the other hand, since f(x, y) = (x−y)2+x2−2x,
if x is either +∞ or−∞, then f is +∞. If x is not +∞ or−∞, then y has to be +∞
or −∞, but then f is again +∞. So the min on the boundary at in�nity is also +∞.
• Compare to determine global max/min. Thus there is no global maximum, while the

global minimum is −1.
(7) We use the extended 4-step process.
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• Find critical points. Note that

∇f(x, y) = 〈2x, 2〉

which is never zero. So there are no critical points.
• Evaluate on critical points. This is unnecessary.
• Find the max/min on the boundary. The boundary is 2x+y2 = 3, so we need to solve

a new constrained optimization problem.
– Find critical points. This means that we need to �nd Lagrange critical points.

The constraint is g(x, y) = 3, where g(x, y) = 2x+ y2. Thus the Lagrange crit-
ical points happen when ∇f(x, y) = 〈2x, 2〉 is parallel to ∇g(x, y) = 〈2, 2y〉.
Since ∇g(x, y) is never zero, this happens when there is λ such that 〈2x, 2〉 =
λ〈2, 2y〉. This means

2x = 2λ, 2 = 2λy

Thus, this means x = λ, so xy = 1. Using the constraint 2x + y2 = 3, this
means 2

y
+ y2 = 3, or 2 + y3 = 3y, or y3 − 3y + 2 = 0. This can be factorized

as (y − 1)(y2 + y − 2) = (y − 1)2(y + 2). Thus this is zero if either y = 1 or
y = −2. This means the Lagrange critical poitns are (1, 1) and (−1

2
,−2).

– Evaluate on critical points. We have f(1, 1) = 3 and f(−1
2
,−2) = 1

4
−4 = −15

4
.

– Find the max/min on the boundary. There is no boundary.
– Compare to �nd the max/min candidates. The max candidate is 3, and the min

candidate is −15
4

.
– Identify the “boundary at in�nity.” If y is±∞, then the constraint says x has to

be −∞. If y is �nite, then x cannot be in�nite, so the boundary at in�nity are
(−∞,+∞) and (−∞,−∞).

– Find the max/min on the “boundary at in�nity.” At (−∞,+∞), f is +∞. At
(−∞,−∞), note x = −y2

2
, so x2 = y4

4
, which dominates 2y, so at (−∞,−∞)

f is +∞. So the max on the boundary at in�nity is +∞, and the min on the
boundary at in�nity is +∞.

– Compare to determine global max/min. There is no global maximum, and the
global minimum is −15

4
.

• Compare to �nd the max/min candidates. There is no max candidate (no global max-
imum), and the min candidate is −15

4
.

• Identify the “boundary at in�nity.” The boundary at in�nity would be x = −∞.
• Find the max/min on the “boundary at in�nity.” At x = −∞, x2+2y would be always
+∞ unless possibly when y = −∞, but again x ≤ 3−y2

2
, so x2 dominates 2y. So again

at (−∞,−∞) the value of f is +∞.
• Compare to determine global max/min. So there is no global maximum, and the global

minimum is −15
4

.
(8) We use extended 4-step process.

• Find critical points. This is a constrained optimization, so we need to �nd Lagrange
critical points. Thus we want ∇f(x, y) = 〈yexy, xexy〉 to be parallel to ∇g(x, y) =
〈3x2, 3y2〉, where g(x, y) = 16 is the constraint with g(x, y) = x3+ y3. This happens
either when ∇g(x, y) is zero or there is λ such that∇f(x, y) = λ∇g(x, y).

44



– If ∇g(x, y) = 〈0, 0〉, then x = y = 0, which doesn’t satisfy the constraint
x3 + y3 = 16.

– If ∇f(x, y) = λ∇g(x, y), we have

yexy = 3λx2, xexy = 3λy2,

so
3λx3 = xyexy = 3λy3

so either λ = 0 or x3 = y3. If λ = 0, then yexy = 0 and xexy = 0, so x = y = 0,
which doesn’t satisfy the constraint x3 + y3 = 16. If x3 = y3, then x = y. From
the constraint x3 + y3 = 16, we get x3 = 8, or x = y = 2.

• Evaluate on critical points. At (2, 2), we have f(2, 2) = e4.
• Find the max/min on the boundary. There is no boundary.
• Compare to �nd the max/min candidates. The max candidate and the min candidate

are both e4.
• Identify the “boundary at in�nity.” The boundary at in�nity would be (+∞,−∞)

and (−∞,+∞).
• Find the max/min on the “boundary at in�nity.” The values on the boundary at in�nity

is e−∞ = 0.
• Compare to determine global max/min. There is no global min, and the global max is
e4.

(9) We use extended 4-step process.
• Find critical points. This is a constrained optimization, so we need to �nd Lagrange

critical points. We thus want∇f(x, y, z) = 〈yz, xz, xy〉 to be parallel to∇g(x, y, z) =
〈y+2z, x+2z, 2x+2y〉where g(x, y, z) = xy+2yz+2zxwith the constraint being
g(x, y, z) = 12. This happens either when∇g is zero or ∇f(x, y, z) = λ∇g(x, y, z).

– If ∇g is zero, then y + 2z = 0, x + 2z = 0, 2x + 2y = 0. So x = −y, so
y + 2z = 0 = −y + 2z, so x = y = 0, and z = 0. This is not possible by the
constraint xy + 2yz + 2zx = 12.

– If ∇f(x, y, z) = λ∇g(x, y, z), this means

yz = λ(y + 2z), xz = λ(x+ 2z), xy = λ(2x+ 2y),

so

xyz = λ(xy + 2xz) = λ(xy + 2yz) = λ(2xz + 2yz)

so 2λxz = 2λyz = λxy. So either λ = 0, or 2xz = 2yz = xy. But λ = 0 implies
xy = xz = yz = 0, which is not possible by the constraint xy+2yz+2zx = 12.
So 2xz = 2yz = xy, which from constraint implies that xy = 2yz = 2zx = 4.
So 2z = x = y, which means x = y = 2 and z = 1 (because of x, y, z ≥ 0).

• Evaluate on critical points. We have f(2, 2, 1) = 4.
• Find the max/min on the boundary. The boundary is when either x, y, z is zero. If so,

the value of f is 0.
• Compare to �nd the max/min candidates. The max candidate is 4 and the min candi-

date is 0.
• Identify the “boundary at in�nity.” The boundary at in�nity is when either x, y, z is
+∞. If x = +∞, then by the constraint we need y = z = 0. Similarly for y and z.
So the boundary at in�nity are (0, 0,+∞), (0,+∞, 0) and (+∞, 0, 0).
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• Find the max/min on the “boundary at in�nity.” At (0, 0,+∞), yz ≤ 6, so xyz = 0.
Similarly for other boundaries at in�nity.
• Compare to determine global max/min. The global max is 4, and the global min is 0.

(10) We use extended 4-step process.
• Find critical points. This is a constrained optimization, so we want ∇f(x, y, z) =
〈4, 2, 1〉 to be parallel to ∇g(x, y, z) = 〈2x, 1, 2z〉 where g(x, y, z) = 1 is the con-
straint with g(x, y, z) = x2 + y + z2. Since ∇g is not zero, there is λ such that
∇f(x, y, z) = λ∇g(x, y, z). This means

4 = 2λx, 2 = λ, 1 = 2λz

So, λ = 2 says
4 = 4x, 1 = 4z,

so x = 1, z = 1
4
. From the constraint, this is impossible.

• Evaluate on critical points. This is skipped.
• Find the max/min on the boundary. There is no boundary.
• Compare to �nd the max/min candidates. There are no max/min candidates, so we

know there is no global max/min without going further.
(11) We use extended 4-step process.

• Find critical points. This happens when

∇f(x, y, z) = 〈ln(x)+1− ln(xyz)

3
−x+ y + z

3x
, ln(y)+1− ln(xyz)

3
−x+ y + z

3y
, ln(z)+1− ln(xyz)

3
−x+ y + z

3z
〉

is zero. If x ≥ y, z, we have

ln(x) + 1− ln(xyz)

3
− x+ y + z

3x
≥ ln(x) + 1− ln(x3)

3
− 3x

3x
= 0,

so if (x, y, z) is a critical point with x ≥ y, z,, it should be the case that x = y = z.
Since given any (x, y, z), either x ≥ y, z, y ≥ x, z or z ≥ x, y, we need x = y = z for
the critical point to happen. If x = y = z, then∇f(x, y, z) is zero.
• Evaluate on critical points. Then f(x, x, x) = 3x ln(x)− x ln(x3) = 0.
• Find the max/min on the boundary. The boundary is such that x = 1 or y = 1 or
z = 1. Since the equation is completely symmetric (namely changing the roles of
x, y, z would give the same equation), we only need to consider the case z = 1 to
compute the max/min on the boundary. The new optimization problem becomes to
�nd the global max/min of

f(x, y) = x ln(x) + y ln(y)− x+ y + 1

3
ln(xy)

on x, y ≥ 1. We use extended 4-step process.
– Find critical points. We want

∇f(x, y) = 〈ln(x) + 1− ln(xy)

3
− x+ y + 1

3x
, ln(y) + 1− ln(xy)

3
− x+ y + 1

3y
〉

to be zero. If x ≥ y, then

ln(x) + 1− ln(xy)

3
− x+ y + 1

3x
≥ ln(x) + 1− ln(x2)

3
− 2x+ 1

3x
=

ln(x)

3
+

1

3
− 1

3x
≥ 0,
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so this is zero if x = y = 1. The same conclusion applies when y ≥ x. Thus,
the critical point would be (1, 1).

– Evaluate on critical points. On the critical point, f(1, 1) = 0.
– Find the max/min on the boundary. The boundary would be x = 1 or y = 1.

Since the equation is completely symmetric, we only need to consider the case
y = 1 to compute the max/min on the boundary. The new optimization problem
becomes to �nd the global max/min of

f(x) = x ln(x)− x+ 2

3
ln(x) =

2x− 2

3
ln(x)

on x ≥ 1. This is a standard optimization problem in one-variable calculus:
we evaluate at the boundary x = 1 which is f(1) = 0, �nd the critical point
f ′(x) = 0 which is

2

3
ln(x) +

2x− 2

3x
= 0,

which can only happen when x = 1 (otherwise each term on the left is strictly
positive), at which f(1) = 0, and see what happens as x → +∞, at which
f(x)→ +∞. So the max does not exist, and the min is 0.

– Compare to �nd the max/min candidates. The max candidate and the min can-
didate are both 0.

– Identify the “boundary at in�nity.” The boundary at in�nity would be either x
or y being +∞. Then f goes to +∞, as either x ln(x) or y ln(y) is the major
term.

– Find the max/min on the “boundary at in�nity.” So the max/min on the bound-
ary at in�nity is +∞.

– Compare to determine global max/min. There is no global max, and the global
min is 0.

• Compare to �nd the max/min candidates. The max and min candidates are both 0.
• Identify the “boundary at in�nity.” The boundary at in�nity is either x, y, z is +∞.
• Find the max/min on the “boundary at in�nity.” Then f goes to +∞, as either x ln(x),
y ln(y) or z ln(z) is the major term.
• Compare to determine global max/min. The global max doesn’t exist, and the global

min is 0.
�

Exercise 3. Determine whether there is a global maximum or a global minimum of a function f
on a region D, and if they exist, �nd the values.

(1) f(x, y, z) = z on D = {(x, y, z) | x2 + y2 = z2, x+ y + z = 24}
(2) f(x, y, z) = x+ y + z on D = {(x, y, z) | x2 + z2 ≤ 2, x+ y ≤ 1}
(3) f(x, y, z) = x2 + y2 + z2 on D = {(x, y, z) | x− y = 1, y2 − z2 = 1}
(4) f(x, y, z) = yz + xy on D = {(x, y, z) | xy = 1, y2 + z2 ≤ 1}
(5) f(x, y, z) = x2 + 2y2 + 3z2 on D = {(x, y, z) | x+ y + z = 1, x− y + 2z = 2}
(6) f(x, y, z) = x2 + y2 + z2 on D = {(x, y, z) | 2x+ y + 2z = 9, 5x+ 5y + 7z = 29}
(7) f(x, y, z) = x2 + y2 + z2 on D = {(x, y, z) | z2 = x2 + y2, x+ y − z + 1 = 0}
(8) f(x, y, z) = xyz on D = {(x, y, z) | x+ y + z = 1, x+ y − z = 0}

Solution.
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(1) Since whether the region is compact or not is not clear, we use the extended 4-step process.
• Step 1. Find the Lagrange critical points. The constraints are g(x, y, z) = 0 and
h(x, y, z) = 24 where g(x, y, z) = x2 + y2− z2 and h(x, y, z) = x+ y+ z. Lagrange
critical points are when either ∇g(x, y, z) = 〈2x, 2y,−2z〉 or ∇h(x, y, z) = 〈1, 1, 1〉
is zero, or∇f(x, y, z) = 〈0, 0, 1〉 is λ∇g(x, y, z)+µ∇h(x, y, z). Note that∇h(x, y, z)
is never zero, and ∇g(x, y, z) is zero if x = y = z = 0, which does not satisfy
x+ y + z = 24. Thus we need to solve

∇f(x, y, z) = λ∇g(x, y, z) + µ∇h(x, y, z)

or
0 = 2λx+ µ, 0 = 2λy + µ, 1 = −2λz + µ

From the �rst two equations, 2λx = 2λy, so either λ = 0 or x = y.
– If λ = 0, we have µ = 0 and µ = 1, which is a contradiction.
– If x = y, then the constraints say z2 = 2x2 and 2x+ z = 24, so

2x2 = z2 = (24− 2x)2 = 4x2 − 96x+ 576

or 2x2 − 96x + 576 = 0, or x2 − 48x + 288 = 0. Thus (x − 24)2 = 288, or
x − 24 = 12

√
2 or −12

√
2, or x = 24 + 12

√
2 or x = 24 − 12

√
2. Thus the

Lagrange critical points are (24 + 12
√
2, 24 + 12

√
2,−24 − 24

√
2) and (24 −

12
√
2, 24− 12

√
2,−24 + 24

√
2).

• Step 2. Evaluate on the Lagrange critical points. We have f(24+12
√
2, 24+12

√
2,−24−

24
√
2) = −24− 24

√
2 and f(24− 12

√
2, 24− 12

√
2,−24 + 24

√
2) = −24 + 24

√
2.

• Step 3. Evaluate on the boundary. There is no boundary.
• Step 4. Find the max/min candidates. The max candidate is −24+ 24

√
2 and the min

candidate is −24− 24
√
2.

• Step 5. Find the boundary at in�nity. Note that x2 + y2 = z2 = (24− x− y)2, so

x2 + y2 = x2 + y2 + 576− 48x− 48y + 2xy

or
2xy − 48x− 48y + 576 = 0

or
xy − 24x− 24y + 288 = 0

or
(x− 24)(y − 24) = 288

so de�nitely x or y can be in�nite. If x = ±∞, then y − 24 has to be 0, and if
y = ±∞, then x − 24 has to be 0. So the boundary at in�nity are (+∞, 24,−∞),
(−∞, 24,+∞), (24,+∞,−∞), (24,−∞,+∞).
• Step 6. Find the max/min on the boundary at in�nity. This would be +∞ or −∞.
• Step 7. Compare. There are no global max and no global min.

(2) Since the region is not compact, we use the extended 4-step process.
• Step 1. Find the critical points. Since ∇f(x, y, z) = 〈1, 1, 1〉, this is never zero.
• Step 2. Evaluate on the critical points. This is skipped.
• Step 3. Evaluate on the boundary. The boundary is consisted of two parts, {(x, y, z) |x2+
z2 = 2, x+ y ≤ 1} and {(x, y, z) | x2 + z2 ≤ 2, x+ y = 1}.
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– On the boundary {(x, y, z) | x2 + z2 = 2, x + y ≤ 1}, we use the extended
4-step process.
∗ Step 1. Find the Lagrange critical points. The constraint is g(x, y, z) = 2

where g(x, y, z) = x2 + z2. Thus we want ∇f(x, y, z) = 〈1, 1, 1〉 to be
parallel to ∇g(x, y, z) = 〈2x, 0, 2z〉. This is only possible if x = z = 0,
which does not satisfy the constraint x2 + z2 = 2.
∗ Step 2. Evaluate on the Lagrange critical points. This is skipped.
∗ Step 3. Evaluate on the boundary. The boundary is the region {(x, y, z) |x2+
z2 = 2, x+ y = 1}. Since this is compact, we use the 4-step process.
· Step 1. Find the Lagrange critical points. The constraints are g(x, y, z) =
2 and h(x, y, z) = 1 where h(x, y, z) = x + y. This means 〈1, 1, 1〉,
〈2x, 0, 2z〉 and 〈1, 1, 0〉 form a plane. This is only possible if 2x = 0, or
x = 0. From the constraints, we have y = 1 and z2 = 2, so the Lagrange
critical points are (0, 1,

√
2) and (0, 1,−

√
2).

· Step 2. Evaluate on the Lagrange critical points. This is f(0, 1,
√
2) =

1 +
√
2 and f(0, 1,−

√
2) = 1−

√
2.

· Step 3. Evaluate on the boundary. There is no boundary.
· Step 4. Compare. The max is 1 +

√
2, and the min is 1−

√
2.

∗ Step 4. Find the max/min candidate. The max candidate is 1 +
√
2, and the

min candidate is 1−
√
2.

∗ Step 5. Find the boundary at in�nity. This is only possible if y = −∞.
∗ Step 6. Find the max/min on the boundary at in�nity. Since x, z are �nite,
f(x,−∞, z) = −∞.
∗ Step 7. Compare. The global max is 1 +

√
2, and there is no global min.

– On the boundary {(x, y, z) | x2 + z2 ≤ 2, x + y = 1}, this region is compact,
so we use the 4-step process.
∗ Step 1. Find the Lagrange critical points. This is possible if ∇f(x, y, z) is

parallel to ∇h(x, y, z), but 〈1, 1, 1〉 and 〈1, 1, 0〉 is never parallel.
∗ Step 2. Evaluate on the Lagrange critical points. This is skipped.
∗ Step 3. Find the max/min on the boundary. This is already done above. The

max is 1 +
√
2, and the min is 1−

√
2.

∗ Step 4. Compare. The global max is 1 +
√
2, and the global min is 1−

√
2.

• Step 4. Find the max/min candidates. The max candidate is 1 +
√
2, and the min

candidate is 1−
√
2.

• Step 5. Find the boundary at in�nity. This is only possible if y = −∞.
• Step 6. Find the max/min on the boundary at in�nity. This is −∞.
• Step 7. Compare. The global max is 1 +

√
2, and there is no global min.

(3) Since the region is not compact, we use the extended 4-step process.
• Step 1. Find the Lagrange critical points. The constraints are g(x, y, z) = 1 and
h(x, y, z) = 1 where g(x, y, z) = x − y and h(x, y, z) = y2 − z2. Thus we want
∇f(x, y, z) = 〈2x, 2y, 2z〉, ∇g(x, y, z) = 〈1,−1, 0〉 and ∇h(x, y, z) = 〈0, 2y,−2z〉
are on a plane. This is the case either when ∇g(x, y, z) or ∇h(x, y, z) is zero, or
when ∇f(x, y, z) = λ∇g(x, y, z) + µ∇h(x, y, z). If the former case happens, then
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y = z = 0, which does not satisfy y2 − z2 = 1. Thus we want

2x = λ, 2y = −λ+ 2µy, 2z = −2µz

or
2y = −2x+ 2µy, 2z = −2µz

From the third equation, either µ = −1 or z = 0.
– If µ = −1, we have 2y = −2x−2y, so 4y = −2x, or x = −2y. From x−y = 1,
−3y = 1, or y = −1

3
. So 1

9
− z2 = 1, which is a contradiction.

– If z = 0, we have y2 = 1, so y = 1 or −1. Then x = 2 or 0. Thus the Lagrange
critical points are (2, 1, 0) and (0,−1, 0).

• Step 2. Evaluate on the Lagrange critical points. We have f(2, 1, 0) = 5 and f(0,−1, 0) =
1.
• Step 3. Find the max/min on the boundary. There is no boundary.
• Step 4. Find the max/min candidate. The max candidate is 5, and the min candidate

is 0.
• Step 5. Find the boundary at in�nity. If any of x, y, z is �nite, all of them are �-

nite. The only requirement is x, y have the same sign, so the boundary at in�nity are
(+∞,+∞,+∞), (+∞,+∞,−∞), (−∞,−∞,+∞), (−∞,−∞,−∞).
• Step 6. Find the max/min on the boundary at in�nity. This is +∞.
• Step 7. Compare. There is no global max, and the global min is 1.

(4) Since the region is not compact, we need to use the extended 4-step process.
• Step 1. Find the Lagrange critical points. The constraint is g(x, y, z) = 1, where
g(x, y, z) = xy. Thus we want∇f(x, y, z) = 〈y, x+ z, y〉 is parallel to∇g(x, y, z) =
〈y, x, 0〉. Thus y = 0, which is impossible due to xy = 1.
• Step 2. Evaluate on the Lagrange critical points. This is skipped.
• Step 3. Find the max/min on the boundary. The boundary is the region

{(x, y, z) | xy = 1, y2 + z2 = 1}

This is again not compact, so we use the extended universal straetgy.
– Step 1. Find the Lagrange critical points. The constraints are g(x, y, z) = 1 and
h(x, y, z) = 1 where h(x, y, z) = y2 + z2. Thus we want either ∇g(x, y, z) =
〈y, x, 0〉 or ∇h(x, y, z) = 〈0, 2y, 2z〉 is zero, or ∇f(x, y, z) = λ∇g(x, y, z) +
µ∇h(x, y, z). The former case happens either x = y = 0 or y = z = 0, which
do not satisfy xy = 1. Thus we need to solve

y = λy, x+ z = λx+ 2µy, y = 2µz

From the �rst equation, either λ = 1 or y = 0.
∗ If λ = 1, we have

x+ z = x+ 2µy, y = 2µz

or
z = 2µy, y = 2µz

or z = 2µy = 4µ2z, so either z = 0 or 4µ2 = 1.
· If z = 0, then y2 = 1, so y = 1 or−1, so x = 1 or−1. Thus the Lagrange

critical points are (1, 1, 0) or (−1,−1, 0).
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· If 4µ2 = 1, then µ = 1
2

or µ = −1
2
. If µ = 1

2
, z = y, while if µ = −1

2
,

z = −y. In any case, y2 + z2 = 1 means 2y2 = 1, so y = 1√
2

or
− 1√

2
. Thus using xy = 1, the Lagrange critical points are (

√
2, 1√

2
, 1√

2
),

(
√
2, 1√

2
,− 1√

2
), (−

√
2,− 1√

2
, 1√

2
), (−

√
2,− 1√

2
,− 1√

2
).

∗ If y = 0, xy = 1 is not satis�ed.
– Step 2. Evaluate on the Lagrange critical points. We have f(1, 1, 0) = 1,
f(−1,−1, 0) = 1, f(

√
2, 1√

2
, 1√

2
) = 3

2
, f(
√
2, 1√

2
,− 1√

2
) = 1

2
, f(−

√
2,− 1√

2
, 1√

2
) =

1
2
, f(−

√
2,− 1√

2
,− 1√

2
) = 3

2
.

– Step 3. Find the max/min on the boundary. There is no boundary.
– Step 4. Compare to get the max/min candidate. The max candidate is 3

2
and the

min candidate is 1
2
.

– Step 5. Find the boundary at in�nity. The boundary at in�nity can only happen
when x = ±∞, where y = 0 and z2 = 1. Thus the boundary at in�nity is
(±∞, 0,±1).

– Step 6. Find the max/min on the boundary at in�nity. This is 1, because xy = 1.
– Step 7. Compare. The global max is 3

2
and the global min is 1

2
.

• Step 4. Compare to get the max/min candidate. The max candidate is 3
2

and the min
candidate is 1

2
.

• Step 5. Find the boundary at in�nity. The boundary at in�nity can happen when
x = ±∞, for which y = 0 and z2 ≤ 1.
• Step 6. Find the max/min on the boundary at in�nity. This is 1, because xy = 1.
• Step 7. Compare. The global max is 3

2
, and the global min is 1

2
.

(5) Since the region is not compact, we use the extended 4-step process.
• Step 1. Find the Lagrange critical points. The constraints are g(x, y, z) = 1 and
h(x, y, z) = 2, where g(x, y, z) = x + y + z and h(x, y, z) = x − y + 2z. We want
either ∇g(x, y, z) = 〈1, 1, 1〉 or ∇h(x, y, z) = 〈1,−1, 2〉 is zero, or ∇f(x, y, z) =
λ∇g(x, y, z) + µ∇h(x, y, z). Since the former is impossible, we want

2x = λ+ µ, 4y = λ− µ, 6z = λ+ 2µ

or
x =

λ+ µ

2
, y =

λ− µ
4

, z =
λ+ 2µ

6
Plugging these into constraints, we get

1 = x+ y + z =
λ+ µ

2
+
λ− µ
4

+
λ+ 2µ

6
=

11

12
λ+

7

12
µ

2 = x− y + 2z =
λ+ µ

2
− λ− µ

4
+
λ+ 2µ

3
=

7

12
λ+

17

12
µ

Thus
7 =

77

12
λ+

49

12
µ

22 =
77

12
λ+

187

12
µ

so
15 =

138

12
µ =

23

2
µ
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or µ = 30
23

. Thus

1 =
11

12
λ+

35

46
or 11

12
λ = 11

46
or λ = 6

23
. Thus

x =
18

23
, y = − 6

23
, z =

11

23
• Step 2. Evaluate on the Lagrange critical points. We have

f(
18

23
,− 6

23
,
11

23
) =

324 + 72 + 363

529
=

759

529
=

33

23
• Step 3. Find the max/min on the boundary. There is no boundary.
• Step 4. Find the max/min candidate. The max candidate and the min candidate are

both 33
23

.
• Step 5. Find the boundary at in�nity. Since x + y + z = 1 and x− y + 2z = 2 gives
2x+3z = 3, x and z have opposite signs. Also, we have 2y−z = −1, so y, z have the
same signs. So the boundary at in�nity are (+∞,−∞,−∞) and (−∞,+∞,+∞).
• Step 6. Evaluate on the boundary at in�nity. This is +∞.
• Step 7. Compare. There is no global max, and the global min is 33

23
.

(6) Since the region is not compact, we use the extended 4-step process.
• Step 1. Find the Lagrange critical points. The constraints are g(x, y, z) = 9 and
h(x, y, z) = 29, where g(x, y, z) = 2x + y + 2z and h(x, y, z) = 5x + 5y + 7z.
Thus∇g(x, y, z) = 〈2, 1, 2〉 and h(x, y, z) = 〈5, 5, 7〉. They are never zero, so for the
Lagrange critical points we need

〈2x, 2y, 2z〉 = λ〈2, 1, 2〉+ µ〈5, 5, 7〉
or

2x = 2λ+ 5µ, 2y = λ+ 5µ, 2z = 2λ+ 7µ

Plugging into the constraints, we get

(2λ+ 5µ) +
λ+ 5µ

2
+ (2λ+ 7µ) = 9

5

2
(2λ+ 5µ) +

5

2
(λ+ 5µ) +

7

2
(2λ+ 7µ) = 29

or
9

2
λ+

29

2
µ = 9

29

2
λ+

99

2
µ = 29

so
1

2
λ+

29

18
µ = 1

1

2
λ+

99

58
µ = 1

so µ = 0 and λ = 2. This gives x = 2, y = 1, z = 2.
• Step 2. Evaluate on the critical points. We have f(2, 1, 2) = 9.
• Step 3. Find the max/min on the boundary. There is no boundary.
• Step 4. Find the max/min candidate. The max candidate is 9 and the min candidate is
9.
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• Step 5. Find the boundary at in�nity. We have 10x+5y+10z = 45, so 5x+3z = 16, so
x, z have the opposite signs. Also, 5x+ 5

2
y+5z = 45

2
, so 5

2
y+2z = 13

2
, so y, z have the

opposite signs. So the boundary at in�nity is (+∞,+∞,−∞) and (−∞,−∞,+∞).
• Step 6. Evaluate on the boundary at in�nity. This is +∞.
• Step 7. Compare. There is no global max, and the global min is 9.

(7) Since the region is not compact, we use the extended 4-step process.
• Step 1. Find the Lagrange critical points. The constraints are g(x, y, z) = 0 and
h(x, y, z) = 0 where g(x, y, z) = z2 − x2 − y2 and h(x, y, z) = x+ y − z + 1. Thus

∇g(x, y, z) = 〈−2x,−2y, 2z〉, ∇h(x, y, z) = 〈1, 1,−1〉

One of these can be zero if x = y = z, which does not satisfy the constraints x+ y−
z + 1 = 0. Thus for the Lagrange critical points we need

2x = −2λx+ µ, 2y = −2λy + µ, 2z = 2λz − µ

Subtracting the second equation from the �rst equation, we get

2(x− y) = −2λ(x− y),

so either x− y = 0 or λ = −1.
– If x− y = 0, then from the constraints we get

z2 = 2x2, 2x− z + 1 = 0,

so z = 2x + 1, so 2x2 = z2 = (2x + 1)2 = 4x2 + 4x + 1, or 2x2 + 4x +

1 = 0. So x = −4±
√
16−8

4
= −2±

√
2

2
. Thus the Lagrange critical points are

(−2+
√
2

2
, −2+

√
2

2
,−1 +

√
2) and (−2−

√
2

2
, −2−

√
2

2
,−1−

√
2).

– If λ = −1, we have

2x = 2x+ µ, 2y = 2y + µ, 2z = −2z − µ,

so µ = 0 and z = 0. Thus x = y = 0, which does not satisfy x+ y− z +1 = 0.
• Step 2. Evaluate on the critical points. We have f(−2+

√
2

2
, −2+

√
2

2
,−1+

√
2) = 6−4

√
2

and f(−2−
√
2

2
, −2−

√
2

2
,−1−

√
2) = 6 + 4

√
2.

• Step 3. Find the max/min on the boundary. There is no boundary.
• Step 4. Find the max/min candidate. The max candidate is 6 + 4

√
2, and the min

candidate is 6− 4
√
2.

• Step 5. Find the boundary at in�nity. On the boundary at in�nity, z must be in�nite.
• Step 6. Evaluate on the boundary at in�nity. On the boundary at in�nity, f is +∞.
• Step 7. Compare. There is no global max, and the global min is 6− 4

√
2.

(8) Since the region is not compact, we use the extended 4-step process.
• Step 1. Find the Lagrange critical points. The constraints are g(x, y, z) = 1 and
h(x, y, z) = 0, where g(x, y, z) = x + y + z and h(x, y, z) = x + y − z. Thus
∇g(x, y, z) and ∇h(x, y, z) are never zero, so we need

∇f(x, y, z) = λ∇g(x, y, z) + µ∇h(x, y, z),

or
yz = λ+ µ, xz = λ+ µ, xy = λ− µ

From the �rst and the second equations, we have yz = xz, so either y = x or z = 0.
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– If y = x, from the constraints, 2x+ z = 1 and 2x− z = 0. Adding them we get
4x = 1, or x = 1

4
, and z = 2x = 1

2
. Thus (1

4
, 1
4
, 1
2
) is a Lagrange critical point.

– If z = 0, from the constraints x+ y = 1 and x+ y = 0, which is contradictory.
• Step 2. Evaluate on the critical points. We have f(1

4
, 1
4
, 1
2
) = 1

32
.

• Step 3. Find the max/min on the boundary. There is no boundary.
• Step 4. Find the max/min candidate. The max candidate is 1

32
and the min candidate

is 1
32

.
• Step 5. Find the boundary at in�nity. Adding the two constraints, we get 2x + 2y =
1, so x and y have opposite signs. Subtracting the second constraint from the �rst
constraint, we get 2z = 1. So z = 1

2
. So the boundary at in�nity are (+∞,−∞, 1

2
)

and (−∞,+∞, 1
2
).

• Step 6. Evaluate on the boundary at in�nity. On both points, the value of f is −∞.
• Step 7. Compare. The global max is 1

32
, and there is no global min.

�

Exercise 4. Find the distance between two objects.
(1) The distance between the surface xy2z3 = 2 and the origin.
(2) The distance between the surface z = x2 + y2 and the point (1, 1, 0).

Solution.

(1) The constrained optimization problem is to �nd the global minimum of f(x, y, z) =√
x2 + y2 + z2 given the constraint g(x, y, z) = 2, where g(x, y, z) = xy2z3. Since the

region is not compact, we use the extended 4-step process.
• Step 1. Find the Lagrange critical points. We want∇f(x, y, z) = 〈 x√

x2+y2+z2
, y√

x2+y2+z2
, z√

x2+y2+z2
〉

to be parallel to∇g(x, y, z) = 〈y2z3, 2xyz3, 3xy2z2〉. This is possible if either∇g(x, y, z)
is zero or ∇f(x, y, z) = λ∇g(x, y, z).

– If ∇g(x, y, z) = 〈0, 0, 0〉, y2z3 = 0, so either y = 0 or z = 0. This is impossible
because of the constraint xy2z3 = 2.

– If ∇f(x, y, z) = λ∇g(x, y, z), then
x√

x2 + y2 + z2
= λy2z3,

y√
x2 + y2 + z2

= 2λxyz3,
z√

x2 + y2 + z2
= 3λxy2z2

Thus

λxy2z3 =
x2√

x2 + y2 + z2
=

y2

2
√
x2 + y2 + z2

=
z2

3
√
x2 + y2 + z2

,

or x2 = y2

2
= z2

3
. Thus y2 = 2x2, and z = ±

√
3x. Putting them into the

constraint, we get ±6
√
3x6 = 2. Thus, z =

√
3x, and 6

√
3x6 = 2, sor x6 =

1
3
√
3
, or x = ± 1

31/4
. Thus the Lagrange critical points are ( 1

31/4
,±

√
2

31/4
, 31/4) and

(− 1
31/4

,±
√
2

31/4
,−31/4).

• Step 2. Evaluate on the Lagrange critical points. We have f(± 1
31/4

,±
√
2

31/4
,±31/4) =√

1√
3
+ 2√

3
+
√
3 =

√
2
√
3.

• Step 3. Find the max/min on the boundary. There is no boundary.
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• Step 4. Find the max/min candidates. The max candidate and the min candidate are
both

√
2
√
3.

• Step 5. Find the boundary at in�nity. Obviously either x, y, z is ±∞.
• Step 6. Find the max/min on the boundary at in�nity. Then f = +∞.
• Step 7. Compare. The global min is

√
2
√
3.

(2) The constrained optimization problem is to �nd the global minimum of f(x, y, z) =√
(x− 1)2 + (y − 1)2 + z2 given the constraint g(x, y, z) = 0 where g(x, y, z) = z −

x2 − y2. Since the region is not compact, we use the extended 4-step process.
• Step 1. Find the Lagrange critical points. We want

∇f(x, y, z) = 〈 x− 1√
(x− 1)2 + (y − 1)2 + z2

,
y − 1√

(x− 1)2 + (y − 1)2 + z2
,

z√
(x− 1)2 + (y − 1)2 + z2

〉

to be parallel to∇g(x, y, z) = 〈−2x,−2y, 1〉. Since∇g(x, y, z) is never zero, we need
to solve ∇f(x, y, z) = λ∇g(x, y, z). This is

x− 1√
(x− 1)2 + (y − 1)2 + z2

= −2λx, y − 1√
(x− 1)2 + (y − 1)2 + z2

= −2λy,

z√
(x− 1)2 + (y − 1)2 + z2

= λ

From the �rst equation, x = 0 does not work, as the left side is not 0 if x = 0.
Similarly, y = 0 does not work. Thus we can divide by x or y, so we have

−x− 1

2x
= −y − 1

2y
= z

or
z = −1

2
+

1

2x
= −1

2
+

1

2y

Thus x = y, and z = −1
2
+ 1

2x
. Thus the constraint becomes z = 2x2, so

2x2 = z = −1

2
+

1

2x
or

4x3 = −x+ 1

or 4x3+x−1 = 0. Since x = 1
2

is a root, this can be factorized as (2x−1)(2x2+x+1) =

0. Thus, either x = 1
2

or 2x2 + x+ 1 = 0. Since the latter quadratic has discriminant
1 − 8 = −7 < 0, this has no root. Thus x = 1

2
= y and z = 1

2
. Thus (1

2
, 1
2
, 1
2
) is a

Lagrange critical point.
• Step 2. Evaluate on the Lagrange critical points. We have f(1

2
, 1
2
, 1
2
) =

√
3
2

.
• Step 3. Find the max/min on the boundary. There is no boundary.
• Step 4. Find the max/min candidates. The max candidate and the min candidate are

both
√
3
2

.
• Step 5. Find the boundary at in�nity. Obviously either x, y, z is ±∞.
• Step 6. Find the max/min on the boundary at in�nity. Then the value of f is +∞.
• Step 7. Compare. The global minimum is

√
3
2

.
�
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